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Preface

This book contains a systematic analysis of allocation rules related to cost
and surplus sharing problems. Broadly speaking, it examines various types
of rules for allocating a common monetary value (cost) between individual
members of a group (or network) when the characteristics of the problem
are somehow objectively given. Without being an advanced text it offers
a comprehensive mathematical analysis of a series of well-known allocation
rules. The aim is to provide an overview and synthesis of current knowl-
edge concerning cost and surplus sharing methods. The text is accompanied
by a description of several practical cases and numerous examples designed
to make the theoretical results easily comprehensible for both students and
practitioners alike.

The book is based on a series of lectures given at the University of
Copenhagen and Copenhagen Business School for graduate students joining
the math/econ program.

I am indebted to numerous colleagues, conference participants and stu-
dents who during the years have shaped my approach and interests through
collaboration, comments and questions that were greatly inspiring. In particu-
lar, I would like to thank Hans Keiding, Maurice Koster, Tobias Markeprand,
Juan D. Moreno-Ternero, Hervé Moulin, Bezalel Peleg, Lars Thorlund-
Petersen, Jørgen Tind, Mich Tvede and Lars Peter Østerdal.
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Chapter 1

Motivation and a Few Cases

1.1 Introduction

Consider two persons sharing a cab on the way home from a party. Typically,
the one who gets off first either tries to avoid payment or pay some arbi-
trary amount (corresponding to whatever is left of cash) to the remaining
passenger.

Now, analysing this scenario as a cost allocation problem between two
agents it turn out that, despite the triviality of the situation, the problem is
actually rather complex. In some sense it seems fair that the cost of the first
part of the trip (that is, until the first person leaves the cab) should be shared
by the two while the remaining cost should be covered solely by the remaining
passenger. However, maybe the cab has to drive a longer route because the
first passenger who gets off lives somewhat off the natural route going to
the remaining passenger’s destination and why should he pay for this? The
remaining passenger may even reason as follows: the person who gets off first
should have paid the first part of the trip by himself if they did not share
the cab (his stand-alone cost) so in some sense this person must be willing
to pay more than half of the amount – in fact, his stand-alone cost can be
viewed as the upper limit of his willingness to pay. So clearly the situation is
not simple at all although the persons involved of course are forced to find a
fast and practical solution.

This book is about analysing such sharing problems in a systematic
fashion. Broadly speaking, it examines various types of rules for allocating a
common monetary value (cost) between individual members of a group (or
network) when the characteristics of the problem are somehow objectively
given. The monetary value (cost) must be allocated exactly, that is, with no
profit or deficit (typically referred to as a requirement of budget-balance).

An allocation rule is a general allocation principle that is used with respect
to an entire class of similarly structured allocation problems for which there
is no objective way to attribute value (cost) to specific members.

J.L. Hougaard, An Introduction to Allocation Rules,
DOI 10.1007/978-3-642-01828-2 1, c© Springer-Verlag Berlin Heidelberg 2009
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2 1 Motivation and a Few Cases

Members should be thought of as the broadly defined economic notion of
“an agent”, typically ranging from individuals, firms and products to stated
objectives.

Examples are many and a part from two persons sharing a cab they include
creditors sharing the liquidation value of a bankrupt firm according to the size
of their claims, farmers sharing the costs of irrigation, regions sharing a pol-
luted river, a firm allocating joint costs on to its product profile, shipowner’s
sharing the scale economies of pooling their vessels, etc.

In order to ensure a systematic investigation the main approach is theo-
retical and builds on the methodology of modern economic theory contrary
to being practically oriented with a direct relation to accounting practices.

As indicated by the cab sharing scenario above, the allocation problems
that will be treated in the following are so common and such an integrated
part of our daily lives that they have been present at all times and in all
types of societies. Therefore, it is not surprising that we can find specific
solutions to such problems among ancient writings like for example the almost
2,000 years old Babylonian Talmud, which contains early Jewish law and
rabbinic discussions on ethics (we will return to the Talmud in Chap. 2 under
rationing problems).

The question is therefore what seems to justify a theoretical treatment of
such problems since they are quite fundamental and closely associated with
specific practical problems concerning our daily lives. Why not just solve one
problem at the time since their solutions seem arbitrary and often depend
on rules of thumb or on the bargaining power of those involved? Just like in
the case of sharing a cab where the outcome hardly is based on sophisticated
considerations concerning the use of a proper and fair allocation rule but
rather seems up to the generosity of person who gets off first.

1.2 Motivation

There are several ways to motivate a theoretical investigation of allocation
rules, but here we shall focus on the following two: (1) An overall welfare
economic argument for the need of fair allocation rules and, (2) A justification
based on managerial arguments concerning the need for strategic information
and “correct” incentives when designing allocation schemes on a company
(organizational) level.

1.2.1 Fairness and Economic Efficiency

From an overall welfare economic point of view the main rationale for
a theoretical investigation of allocation rules is related to the notions of
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Fairness and Efficiency: Typically cooperation among agents is efficient at
all levels in the economy due to various forms of synergies. Consequently,
the organization of joint activities ought to sustain such cooperation in the
long run.

Now, since all forms of cooperation will result in common benefits and
burdens for those involved, the agents have to “agree” on some way of sharing
these benefits and burdens. Clearly, if the actual allocation is conceived as
unfair (or unjust) by some agents in the group these agents have an incentive
to block the cooperation and thereby the group as a whole will suffer an
efficiency loss.

This line of reasoning goes back a long way. At least implicitly it can be
found among ideas concerning the state as an association by Aristotle (see
Aristotle, “The Politics”). According to Aristotle, the (city-)state polis can
be seen as the natural end-result of a process where individuals and groups
of individuals gradually give up part of their freedom and self oriented in-
terests in order to enter into various kinds of associations. The atom of polis
is the household unit (oikos), which basically consists of the family. Within
each oikos individuals will typically have opposing preferences and the power
structure need not be the result of common agreement. For instance, in an-
tiquity it was not unusual that slaves were part of the household. However,
a good household is one where the “master” is fair and the benefits of co-
operation is shared fairly among the members. It is tempting to interpret
this as everyone being better off in the oikos than standing alone in terms of
individual welfare.

Now, households group together in villages, which in the end group
together and form polis. But even if every individual ought to appear equal
in the association of the state through a democratic constitution (although
democracy literally refers to rule of the poor majority), polis is full of inherent
conflicts of interest between individuals as well as various coalitions. Thus, if
polis is going to be a stable construction then everyone must feel that they
are part of a just and fair association receiving fair shares of the benefits and
burdens related to the creation of the state.

As such the overall issue of allocation goes far beyond the field of economics
and concern also aspects of moral philosophy, law and political science. At
a highly abstract level there are at least four widely discussed principles for
fair allocation:

1. The proportionality principle by Aristotle:

This, then, is what the just is – the proportional; the unjust is what violates
the proportion . . . . . . For the justice which distributes common possessions
is always in accordance with the kind of proportion mentioned above (for in
the case also in which the distribution is made from the common funds of a
partnership it will be according to the same ratio which the funds put into
the business by the partners bear to one another); and the injustice opposed
to this kind of justice is that which violates the proportion. (From Aristotle
“Nicomachean Ethics” book V, 350BCE)
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Even though proportionality is used as a somewhat vague notion it seems
rather straightforward to interpret this as proportionality relative to cer-
tain well defined parameters in practical cases, for instance, creditors
claims when sharing the liquidation value of a bankrupt firm. As such
the proportionality principle seems deeply rooted in western thinking.
Perhaps the best way to realize this is by looking at alternative principles
from different cultures as, e.g., the “contested garment” principle from the
Jewish Talmud: Two women are fighting over some piece of fabric. One
woman demand the entire piece while the other only demands half of it.
Now, according to the proportionality principle a fair allocation can be
implemented as two-thirds (to the one who demands the entire piece) and
one-third (for the one demanding half of the piece) because in total 1.5
piece of fabric is demanded. However, according the Jewish rabbi referred
to in the Talmud, the fair allocation should be three-fourths (to the one
who demands the entire piece) and one-fourth (for the one demanding half
of the piece). The rationale is as follows: Only half of the piece is contested
and both women have an equal right to this half. Consequently the half
is split in two equal pieces (yielding one-fourth of the piece for each). But
the other half of the piece is not contested since only one of the women
makes a claim for this. Hence this woman gets that half piece for herself,
resulting in the allocation (three-fourths, one-fourth). (Note that while
the proportionality principle is general the contested garment principle is
not straightforward to extend to cases with more than two persons.)

2. The utilitarian principle by Bentham:

“It is the greatest happiness of the greatest number that is the measure of
right and wrong” (From Bentham “A Fragment on Government” 1776).

In terms of practical allocation this can be interpreted as goods should
be allocated such that the total sum of the agents utilities from receiving
their allocated share is maximized (although taken literally it is somewhat
ambiguous what it means to maximize two things – happiness and the
number of agents – at the same time). Moreover, the notion of happiness
(or utility) is by itself ambiguous because there is no straightforward way
of measurement and it is not even sure that it makes sense to compare
the happiness of one agent with the happiness of another. Since the time
of Bentham this has led to an ongoing discussion concerning the nature of
utility and utilitarianism as an appropriate foundation for welfare theory,
see, e.g., Roemer (1996).

3. The difference principle by Rawls:

“Social and economic inequalities must be (a) to the greatest benefit of the
least advantaged members of the society, and (b) attached to positions open
to all”. (From Rawls “A theory of Justice” 1971).

As such any deviation from the equal allocation can only be justified if it is
to the advantage of the worst off individual in the group and consequently
the difference principle is often considered as a maximin rule (also by
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Rawls himself, see, e.g., Rawls 1974). The difference principle is argued to
be the result of a rational collective decision made by a group of free and
equal individuals. Equality is enforced through a “veil of ignorance”, which
is imagined to remove any trace of personal abilities, character and his-
tory of the individual. In effect, all individuals are hence transferred into
the same being, i.e., an agent similar to what Adam Smith called “the
impartial spectator” who is able to make decisions taking every agents
interests into account. It is somewhat important to mention that Rawls
only considered the allocation of so-called “primary social goods”, which
are goods that everybody are supposed to be able to evaluate in the same
way like freedom, property rights, economic institutions, etc. But even
though the difference principle is not directly meant to be implemented
allocating normal commodities the contrast to utilitarian thinking is crys-
tal clear and it is therefore not surprising that modern utilitarians like
John Harsanyi has been among the greatest opponents to Rawls theory of
justice (see, e.g., Harsanyi 1975).

4. The envy-free principle by Tinbergen: This notion was originally proposed
in Tinbergen (1953) and related to particular allocations in Foley (1967).
The idea is that allocations ought to be envy-free in the following sense:
An allocation (of bundles of goods) is said to be envy-free if no agent
prefers another agents’ allocation to his own. This does not require inter-
personal utility comparisons since each agent uses his own utility function
to evaluate the other agents allocations. Note, that the word “envy”, as
used in common language, often refers to externalities in consumption
(the utility of my own car decreases when my neighbour buys a new and
more expensive model), but this is not the case here. Moreover, note that
if only a single homogeneous good is being allocated (as in the case of
cost sharing or bankruptcy problems where creditors share the liquidation
value of a bankrupt firm) then an allocation is envy-free if and only if the
total amount is equally divided.

Now, with the exception of the proportionality principle, which can be
used more broadly, these general ideas of how to allocate fairly all require
that agents have well defined preferences and that these are known to the ana-
lyst. The typical case, however, rather seems to be that an agents’ preferences
are unknown to the analyst (planner) as well as the other agents, and perhaps
even to the agent himself. Moreover, in many of the situations considered in
the following chapters it is even meaningless to talk about preferences in the
first place: For example in case joint costs are allocated onto specific prod-
ucts or costs are allocated onto objects such as various purposes, objectives,
etc. (see, e.g., the TVA case in Sect. 1.3.1). Clearly, it only makes sense to
equip agents with a preference structure if the agents can be supposed to
act strategically according to such preferences and in many cost (or surplus)
sharing situations this will not be the case.

General principles, including those mentioned above, are therefore rarely
operational (although intellectually appealing) and for most sharing problems
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as considered in the following, economists are typically forced to use more
straightforward normative fairness requirements such as for example:

(a) Equal Treatment of Equals: If the relevant parameters describing the
allocation problem are equal for two different agents then the resulting
allocation should be the same. Clearly, if we violate this simple fairness
requirement we deliberately discriminate between agents. If for some
reason such a discrimination is justified we would typically be able to
reformulate the allocation problem such that Equal Treatment of Equals
can be met. For instance, if two municipalities engage in a joint project
to the mutual benefit of their citizens and have to share the resulting
common costs one reason to discriminate could be that one of the munic-
ipalities has more citizens than the other. In this sense the municipalities
are not equal and treating them equally in terms of cost allocation might
be seen as unfair. However, the cost model can easily be reformulated in
terms of costs per citizen and in this case equal treatment seems a fair
requirement.

(b) The Stand-alone Principle: The idea is here that no agent should be
worse off joining a group than standing alone because standing alone is
always a feasible option. Thus, when sharing the benefits and burdens
of cooperation, agents allocations are naturally bounded by the result of
their stand alone option. Say, for example, that a group of agents are
sharing a common cost. Then, according to the stand-alone principle, no
agent in the group can be forced to pay more than their cost of standing
alone.

(c) Consistency: Consider the following extension of the contested garment
principle from two to three agents, also from the Talmud:

If a man who was married to three wives dies and the marriage contract of
one was 100 zuz, of the other 200 zuz, and of the third 300 zuz and the estate
is worth only 100 zuz the sum is divided equally. If the estate is worth 200 zuz
the claimant of 100 zuz receives 50 zuz and the claimants of respectively 200
and 300 zuz get 75 zuz. If the estate is worth 300 zuz the claimant of 100 zuz
receives 50 zuz and the claimant of the 200 zuz receives 100 zuz while the
claimant of 300 zuz receives 150 zuz. Similarly, if three persons contributed
to a joint fund and they made a loss or a profit they share in the same
manner.

One way to verify that such an extension is in fact in line with the
original allocation principle is to test whether the resulting allocation
is Consistent in the sense that, if we take the (3-agent) problem and
break it into (2-agent) subproblems using the same allocation principle
as before with respect to the related reduced allocation problems then the
resulting allocation should be the same for every agent in the subgroup
as in the original problem. Note that this hinges on the formulation of
the reduced allocation problem, which will be discussed in detail in the
following chapters (particularly in Chap. 3).
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These and several other requirements related to fairness in a broader sense
will be used to characterize various allocation rules in the following chapters
in order to present a detailed picture of how such rules perform in different
allocation scenarios.

1.2.2 Management Decisions and Incentives

At organizational level, allocation problems typically concern either cost
sharing issues or the allocation of rewards for those making an effort and
taking risks within the organization.

Cost sharing issues crop up when costs need to be allocated over accounting
periods or when common or overhead costs need to be attributed to different
divisions (or other cost drivers) according to internal accounting schemes.
Moreover, if production is characterized by economics of scope, there may
also be a need for letting the resulting joint costs be attributed to specific
products of the firms’ output profile.

In the accounting literature it has been much debated whether or not it is
rational for firms to allocate common and joint costs, see, e.g., Dopuch (1981)
for a brief overview. Thomas (1969, 1974) represent one extreme in this de-
bate arguing strongly against cost allocation. Yet, more recently there seems
to be consensus among accounting experts that such cost allocations are use-
ful to the company both in relation to the preparation of external financial
reports and as important information with respect to company strategy and
managerial decision making. For example, allocating costs can become a vi-
tal part of ongoing efforts to improve various operations and processes in the
firm and may also help to identify the relative profitability of products.

Fact remains that the firms actually do make such allocations and there-
fore must find them useful with respect to various aspects of managing the
company. But of course it is important how these common or joint costs
actually are allocated as illustrated by the following example (mimicking a
case discussed in Shank and Govindarajan 1993).

Example 1.1. A firm produces three products A, B and C involving a large
element of overhead costs from activities concerning R&D, packing and re-
ceiving. In total there is an overhead of 1,000,000 euros where 500,000 is
associated with the R&D department, 200,000 is associated with the packing
department and 300,000 is associated with the receiving department.

Product A is produced in 10,000 units in one run and all units are shipped
off in one shipment. Product B is produced in 15,000 units in three runs and
these are shipped off in five shipments. Finally, product C is produced in
5,000 units in 10 runs and shipped off in 20 shipments.
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Looking at production unit costs (in euros), i.e., the costs which can be
directly attributed to the products, we have the following:

Unit costs A B C

Materials 20 30 10

Set-up 0.02 0.04 0.44

Labour 10 6.67 5

Machine 17.5 23.33 35

In total 47.52 60.04 50.44

Recently the firm has experienced considerable price competition on
product B from foreign competitors. Since the production facilities are mod-
ern and fully competitive the management consequently assumes that their
foreign competitors are dumping their prices in order to establish themselves
at the European market.

For product C the firm has experienced that they can raise their price
without decreasing sales and, even more surprising, without introducing com-
petition from other firms. The management assume that the product must
satisfy some consumer need, which they were not aware off before.

Calculating the average unit cost for each product, the firm has tradition-
ally allocated the overhead costs proportional to labour time. Since producing
product A requires 0.5 h working time per unit, producing product B requires
0.33 h working time per unit and producing product C requires 0.25 h work-
ing time per unit the resulting weights are (0.44, 0.44, 0.12). Thus, the total
overhead of 1,000,000 euro is shared as (44.44, 29.63, 22.22) euro per unit for
products A,B and C respectively. Using this approach, the firms’ total unit
costs, profit margin, target price, actual sales price and realized profit margin
is given in the table below:

Product A B C

Total unit costs 91.96 89.67 72.26

Expected profit margin (%) 35 35 35

Target price 141.47 137.95 111.16

Sales price 141.47 125.50 123.70

Actual profit margin (%) 35 28.5 41.6

Allocating the common costs according to labour time hence provides
an incentive to focus more on product C and move away from the main
product B.

Now, instead of allocating costs according to labour time the management
could also try to use an approach where common costs are related more
directly to the activities by which they are caused (the main idea behind the
notion of Activity Based Costing).
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Looking at the receiving department (with its share of overhead at
300,000), costs ought to be related to the amount of work connected with
receiving the products yielding the following weights on products (0.04,
0.15, 0.81).

Looking the packing department (with its overhead share of 200,000) they
need to pack once for every shipment. This yields a set of weights on products
(0.04, 0.19, 0.77).

Finally, looking at the R&D department (with its overhead share of
500,000) a subjective estimate of future activities concerning product A, B
and C respectively results in the following weights (0.25, 0.35, 0.4).

Consequently, the picture of production costs changes radically allocating
costs in accordance with activities as seen in table below:

Products A B C

Total unit costs 62.02 77.23 169.84

Sales price 141.47 125.50 123.70

Actual profit margin (%) 56 38.5 −37.3

The first thing to notice is that product C originally was attributed too lit-
tle unit cost. So from being the product with highest profit margin it actually
now turns out to have a negative profit margin. Thus, it is not strange that
other companies are not competing even though prices are raised slightly on
this product. Likewise it is now clear why the foreign competitors are able to
lower their price on product B since the profit margin here is higher than what
the firm expected. Since the foreign competitors are not producing product
C they got a better picture of B’s true unit costs. �

Even though it is important to allocate costs “correctly” as demonstrated
by the example above, allocating costs in line with the activities from which
they are derived (as in the spirit of Activity Based Costing, see, e.g., Kaplan
and Bruns 1987) is not necessarily a goal by itself. There may be several
other aspects, which needs to be taken into account when designing suitable
allocation schemes.

The overall guideline for “good” design should be related to the firms’
profitability in the long run as stated in Shubik (1962):

A goal of good management should be to design a reward system for those who
take risks in making decisions in such a manner that the rewards to the indi-
vidual correlate positively with the worth of the decision to the organization.
In many organizations cost accounting supplies much of the information used
for control at several levels.

Here, of course, the word individual may be interpreted as any kind of agent
able to make decisions influencing the profitability of the firm. It therefore
becomes important to think in terms of incentives when designing specific
allocation schemes. For instance, if the cost share of a given division increases
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as a result of this divisions efforts to save costs for the company as a whole,
then the incentives of the cost sharing rule seem very unfortunate indeed.

Imagine, for example, a consultancy firm with a headquarter in one coun-
try and a branch in another country. Assume that both the manager of the
headquarter and the branch manager are rewarded relative to the profit of
their division. Now, when the branch demand staff services from the head-
quarter they pay a fixed internal rate per unit of working time. Say, this
rate does not take staff overhead costs into account. Then the manager of
the branch has no incentive for local expansion in terms of more personnel
since by requiring staff services from the headquarter he avoids paying staff
overhead costs and only pay for the effective working time. Clearly, this may
be costly, not only for the manager of the headquarter, but also for the com-
pany as a whole since in the long run it may be cheaper to hire local staff
and a large branch (in terms of staff) may represent a competitive advantage
in the local market, etc.

Another example could concern firms’ bonus schemes for employees. Typ-
ically, the firm wants to promote individual initiative and effort by rewarding
this with some kind of bonus. However, the problem of designing such bonus
schemes turns out to be rather delicate since it is important not to give too
much incentive to overly individualistic behavior because employees often
have to cooperate and assist each other in teams for the greater benefit of
the firm. The problem is therefore to balance multiple and often opposing
incentives when composing the right system of rewards.

In the present text this problem is approached by investigating various
forms of monotonicity requirements with respect to cost shares: a somewhat
primitive way to ensure right incentives is to require that cost shares should
decrease (increase) as the result of decreasing (increasing) stand-alone costs
of any agent or coalition of agents. Different types of such monotonicity con-
ditions will be studied in detail in the chapters to follow (in particular in
Chap. 3).

1.3 Some Practical Cases

To briefly introduce the types of problems considered in the following, this
section will look at a few practical cases where the methodology has proved
useful in solving actual economic problems arising from joint activities.

1.3.1 The Tennessee Valley Project

The Tennessee Valley Authority (TVA) case is a classic in the cost shar-
ing literature, see, e.g., Young (1994) or Ransmeier (1942) for the original
description.
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During the 1930s the US government undertook a large redevelopment
project for the Tennessee River Basin by building a series of multi-purpose
reservoirs in order to (1) control flooding, (2) provide electric power and
(3) improve navigation and recreation.

A dam can be build in different heights to accommodate different pur-
poses. The costs estimated by TVA in relation to the fulfillment of various
combinations of the purposes {1, 2, 3} above, are given by:

Purpose Cost (1,000 dollars)

{1} 163,520

{2} 140,826

{3} 250,096

{1,2} 301,607

{1,3} 378,821

{2,3} 367,370

{1,2,3} 412,584

It can be noticed that it is cheaper to fulfill several purposes at the same time
rather than separately (i.e., costs are subadditive in purposes). For example,
the costs of reaching a satisfactory level of flooding control and electric power
simultaneously is $301,607,000 while taken separately these costs amount to
($163,520,000 + $140,826, 000 =) $304,346,000.

Now, referring to the Stand-alone principle the purposes 1,2 and 3
should not be charged more than at most $163,520,000, $140,826,000 and
$250,096,000 respectively since these costs represent the stand-alone options.
Equivalently, none of the purposes ought to subsidize other purposes and
hence should be charged at least their marginal cost, i.e., the cost of fulfilling
all purposes minus the costs of fulfilling all purposes except for the one in
question (that is, the additional costs of fulfilling this extra purpose). In the
specific case of TVA marginal costs are given by:

Purpose Marginal cost (1,000 dollars)

{1} (412,584 − 367,370 =) 45,214

{2} (412,584 − 378,821 =) 33,763

{3} (412,584 − 301,607 =) 110,977

In total 189,954

Thus, according to the Stand-alone principle there is a natural range within
which the cost shares must be located, i.e., between the marginal cost and
the stand-alone cost. Knowing that the cost shares must result in budget-
balance this gives rise to a set of possible allocations all respecting the
Stand-alone principle. This set is also known as the core of the associated
cost sharing problem. Further details will be postponed to Chap. 3.
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In the TVA case, engineers and economists used the following approach
called the Alternate-Cost-Avoided method (the ACA-method) building on
marginal costs: The idea is that each purpose must pay its marginal cost. In
this case total value collected will not be enough to cover all costs so the cost
gap is then shared among the purposes in proportion to their marginal costs.
Using the specific costs data of the TVA project the final allocation can be
found as:

Purpose Stand-alone−marginal cost Cost share

{1} (163,520− 45,214 =) 118,306 45,214 + 118,306
364,488

(412,584− 189,954) = 117,475.5

{2} (140,826− 33,763 =) 107,063 33,763 + 107,063
364,488

(412,584− 189,954) = 99,152.3

{3} (250,096− 110,977 =) 139,119 110,977 + 139,119
364,488

(412,584− 189,954) = 195,951.2

In total 364,488 412,584

In this particular case it can be checked that the allocation of costs respects
the Stand-alone principle (i.e., lies between the marginal cost and the stand-
alone cost) but this is not a general property of the ACA-method as it can
be demonstrated for more than four purposes (agents).

1.3.2 Farmer’s Irrigation Costs

Another practical example is provided by the study of Aadland and Kolpin
(1998), which considers cost sharing issues related to 25 irrigation ditches lo-
cated in Montana, USA. The ditches are used to provide water to the farmers
fields as well as livestock during the summer months. With the headgate lo-
cated at the stream, water can be transferred from a stream in the main
irrigation ditch passing through all the farmers fields. This ditch is therefore
“common” among the farmers. From the main ditch individual farmers may
then have their private ditches running through their own land. The farmers
are responsible for their private ditches while the maintenance costs of the
main ditch are subject to cost sharing among all the farmers. On average
these costs are between $1,000 and $2,000 but may go as low as $0 and as
high as $20,000 in certain years.

Two types of allocation rules seems to present themselves rather naturally
in such a setting:

1. Farmers are located sequentially along the ditch borders therefore it seems
that the maintenance costs of the segment of the ditch located at the
headgate should be shared by all n farmers downstream while the costs
of the following segment should only be shared among the n − 1 farmers
downstream from there and so forth until cost associated with the last
segment of the ditch is covered solely by the farmer furthest away from
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the headgate. Now, costs associated with each segment can be established
on per ranch (person), per water share or per acre basis as three natural
choices.

2. Another way to consider the problem would simply be to share mainte-
nance costs equally among all farmers along the ditch or in proportion to
each ranchs’ water share or size (measured in acres).

Rather interestingly, it turned out that these two types were exactly the
types of rules used by the farmers located along the 25 main ditches. In fact,
in 14 cases the farmers used the serial approach (7 on a per head basis, 3 on
per water share basis, and 4 on per acre basis) while in 10 cases the farmers
used variations of the average cost rule (1 on per head basis, 3 on per water
share basis, and 6 on per acre basis). In 1 case, a combination of average and
marginal cost sharing was used.

As an empirical fact, these solutions to the problem of sharing the mainte-
nance costs have remained constant since the early 1900s. As such, both the
serial and the average cost rule appear to give rise to allocations that must
be conceived as being fair by all the agents involved. Such allocations there-
fore represent stable solutions in practice, at least in the context of sharing
irrigation costs.

1.3.3 Regulating Public Monopolies

Over the last couple of decades Europe has witnessed a series of reforms from
the European Commission aiming at introducing competition on markets that
was previously covered by large public monopolies. For example, the market
for postal services.

In general, this process moves slow and as recognized by ARCEP
(Autorité de Regulation des Communication électroniques et des Postes
– the French Regulatory Authority) France in one the countries where the
market for postal services is most static (see http://www.arcep.fr).

The main idea behind market opening is to facilitate business adaptation
and create economic effectiveness among the service providers; especially the
Universal Service Provider (USO) like La Poste in France.

In the French case, reports had documented several imperfections such as
(1) vague obligations on the incumbent whose cost and financing were all but
transparent, (2) that tariffs were unrelated to costs leading to potential waste
of resources, (3) that there was no incentives to economic efficiency, resulting
in outdated industrial processes and (4) generally poor quality performances
(see http://www.arcep.fr).

The role of ARCEP in this connection is to set up principles of cost ac-
counting, which ensures separation and transparency of La Poste’s costs, as
well as making annual audit of the compliance with these principles.
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The cost standard used for the regulatory accounts aims at a full allocation
of costs over products (in fact, less than 5% of La Poste’s total cost remain
unattributed to products). The specific accounting method used is Activity
Based Costing build around cost drivers related to all parts of the production
process, that is; Counter (8% of costs), Collecting (7% of costs), Sorting (17%
of costs), Transportation (8% of cost) and Delivery (51% of costs).

Consider, for instance, the most important cost driver in terms of percent-
age of costs, i.e., “Delivery”. Here, a large part of the costs are fixed common
costs mainly resulting from the carriers route time.

Allocating the common costs to products ARCEP requires that the ap-
plied allocation rule should not lead to cross-subsidies and should not assign
cost shares to each product larger than the products stand-alone cost. Thus,
ARCEP follows the Stand-alone principle as stated in Sect. 1.2.1.

Stand-alone costs are here interpreted as the costs incurred by the operator
if each product (class of mail) were delivered separately: First class mail is
delivered 6 days a week and therefore has a stand-alone cost of six times the
cost of a daily delivery; Second class mail is delivered 3 days a week and
therefore has a stand-alone cost of three times the cost of a daily delivery
while; Third class mail is delivered once a week and therefore has a stand-
alone cost of one daily delivery. Note that since the carrier can bring out 2′

and 3′ class mail as well when delivering 1′ class mail then the stand-alone
costs of any coalition of products become the maximum of the stand-alone
costs of any single element of the coalition.

Moreover, as first class mail is quite expensive all fixed costs can be at-
tributed to this product without violating the Stand-alone upper bound given
by the stand-alone cost. Therefore, many rules will satisfy the Stand-alone
principle and there is a need for additional requirements (in fact, any allo-
cation resulting in shares between 50% and 100% for 1′ class mail, 0% and
50% for 2′ class and 0% and 17% for 3′ class mail will satisfy the Stand-alone
principle).

What ARCEP do is to estimate the economics of scope as the sum of the
stand-alone costs minus the costs of delivering all three classes of mail. The
cost shares related to each product is then computed as the stand-alone cost
minus a share of the economies of scope proportional to the stand-alone cost.
In effect, this implies that the total common cost is shared in proportion
to the products stand-alone cost (a rule also known as the Moriarity rule
in the accounting literature). It is easy to see that such a rule satisfies the
Stand-alone principle.

Consequently, the resulting cost shares are given by (60%, 30%, 10%) for
1′, 2′ and 3′ class mail respectively. This can be compared to La Poste’s own
allocation of (80%, 15%, 5%) respectively. Hence, ARCEP requires that La
Poste decrease its deficit on the first class mail while reducing the high profit
margin on regular (second class) mail.
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1.4 Limits of Scope

Although this book covers a wide range of allocation problems there are
of course limitations of scope. To briefly mention just a few of the most
important ones, the text does NOT consider:

• Allocation rules when goods are indivisible. For example, a couple sharing
their kids in case of divorce. Clearly, in such cases we often need specific
procedures like the kids being time-shared between the parents, a lottery
or a priority list giving for example the mother priority. See, e.g., Young
(1994) for a treatment of methods for allocating indivisible goods.

• Allocation of bundles of goods (even fully divisible) when preferences play
a central role. For example, in case two heirs have to share three houses and
25 paintings. In case the goods are divisible we could, of course, assume
that the problems can be solved separately (allocating one good at a time)
but if agents have preferences over bundles of goods their conception of
fairness may not correspond to the result of such separate procedures.
See, e.g., Thomson (2008) for a recent survey of models dealing with fair
allocation of bundles of goods.

• Allocation by voting. For example, voting over the partition of a piece of
land. In such cases we cross the border of Social Choice theory, see, e.g.,
Moulin (1988) for a treatment of such procedures.

• Issues of bargaining related to allocation problems. For example, when
countries bargain over emission cuts, fishing quota, mining rights, etc. The
topic of bargaining is, e.g., covered in Osborne and Rubinstein (1990).

• “Cake-cutting” procedures. For example, the well-known process where
two persons share a cake by letting one cut and the other choose first. See
again Young (1994) or Brams and Taylor (1996).

Ending every chapter in the following, there will be a section named “Com-
ments” pointing out some of the limitations as well as possible extensions of
the issues analysed in the text.
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Chapter 2

Simple Sharing Problems

2.1 Introduction

Simple sharing problems involve a group of n agents indexed j = 1, . . . , n.
The term “agent” is here broadly interpreted as persons, firms, departments,
branches, products, etc. Each agent is characterized by some one-dimensional
factor qj ∈ R+ such as demand, claim, “stand-alone” cost, effort, surplus, etc.

Basically, we shall distinguish between two types of situations: First, the
case where agents characteristics q = (q1, . . . , qn) do not influence the costs
(or value) which has to be shared, say, a fixed amount E. Second, the case
where agents characteristics q = (q1, . . . , qn) influence the amount of costs
(or value). To be more specific, we shall assume that q is a demand vector
and that costs are given either as the costs associated with the total demand
Q = q1 + . . . + qn or as the costs associated with the highest demand Q =
maxi{qi}. In both cases (z = Q and z = Q), cost will be modeled by a
(one-dimensional) non-decreasing cost function C : R+ → R+ (or the value
modeled by a one-dimensional non-decreasing value function V : R+ → R+).

The following scenarios may be imagined:

1. A firm goes bankrupt with liquidation value E. “Agents” may here rep-
resent n creditors each characterized by their verifiable claim qj . Hence,
characteristics are not linked directly to the size of E. If total debt exceeds
the liquidation value the problem may equivalently be construed as that of
sharing a loss between n claimants. Such bankruptcy problems are treated
in Sect. 2.2, but given a fixed-price setting, any excess demand will cause
similar problems to arise and they will generally be referred to as rationing
problems.

2. A community of n households wants to be connected to a local power
plant and has to share the costs of establishing a connection. Assume, for
example, that the households are located as a chain and are character-
ized by their individual distance qj from the plant. Clearly, characteristics
influence the total costs in this situation: as it is economically rational
to link all households to the same line rather than establishing separate
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connections for each household the related cost function will be of the
(decomposable) form C(maxj{qj}), since total costs will be determined
by the most distant household. Alternatively, a decomposable cost func-
tion C(maxj{qj}) may be used to represent situations where a group of
agents demand some amount of an excludable good which is consumed
without rivalry (an excludable public good) and the total cost therefore
is determined by the agent with the highest demand. Cost sharing rules
that apply in such cases will be examined in Sect. 2.3.

3. Consider a firm where the total costs of operating a service department has
to be allocated among n user departments or n products. That is, “agents”
may refer to departments or products of the firm. If user departments
are considered the characteristics qj may simply be the amount of service
demanded by department j which is, of course, directly related to the
size of the total costs. If service can be considered as a homogeneous
good, costs are generated by a (homogeneous) cost function C(Q), where
Q = q1 + . . . + qn is total demand. That is, C(Q) has to be shared among
the n user departments. Cost sharing rules that apply in such cases will
be examined in Sect. 2.3. On the other hand, if index j refers to products
the characteristics qj may be the amount of working hours used to produce
one unit of product j which is not linked directly to the size of total costs.
Thus, total cost is regarded as a fixed amount E that has to be shared
between products according to the characteristics vector q. Cost sharing
rules that apply in such cases relate to the rules examined in Sect. 2.2.

In the present chapter we shall consider such simple sharing problems in
further detail. First, the case of a fixed amount E will be analysed focusing
on rationing problems and secondly, the case of a (one-dimensional) cost
function will be analysed focussing on cost sharing problems.

2.2 Rationing Problems

As in (1) above, we consider a rationing problem where a given quantity
E ≥ 0 of money (or some other fully divisible good) has to be shared among
n agents with non-negative demands q = (q1, . . . , qn) measured in monetary
units (or in units of some other fully divisible good). Assume that E and q
are measured in the same units and that individual demands are objectively
determined, for example, as verifiable claims in case of bankruptcy problems.
Moreover, assume for convenience that demands are increasingly ordered,
i.e., q1 ≤ . . . ≤ qn. Since the problem is that of rationing the total demand
Q = q1 + . . . + qn exceeds the available quantity E, i.e., Q ≥ E ≥ 0.

Given a rationing problem (q, E), a rationing rule ϕ specifies a unique
vector of shares x = (x1, . . . , xn) = ϕ(q, E) where x1 + . . . + xn = E, and
0 ≤ xi ≤ qi for all i = 1, . . . , n. The latter condition ensures that no agent
gets a negative share or a share larger than what is demanded. Although
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this appears to be a rather natural constraint it actually excludes several
well known sharing rules. Consider, for example the equal split rule where
xj = E/n for all j = 1, . . . , n and the extreme priority rule where xj = E
and xi = 0 for i �= j.

In the following we shall focus on rationing rules that are order-preserving
in the sense that an agent with a higher demand than another agent will get
both a larger share xi and loss qi − xi, i.e.,

x1 ≤ . . . ≤ xn, and q1 − x1 ≤ . . . ≤ qn − xn, (2.1)

and resource monotonic in the sense that the share of all agents, as given by
ϕi(q, E), i = 1, . . . , n, is non-decreasing in the quantity E ∈ [0, Q]. Denote by
R the set of order-preserving and resource monotonic rationing rules. Order-
preservation and resource monotonicity seem to be natural requirements with
respect to rationing rules. Note, for example, that the extreme priority rule
violates order-preservation.

As mentioned in (1) above, any rationing problem (q, E) may be construed
either directly as the problem of sharing the quantity E given demands q or
indirectly as the problem of sharing the loss Q − E given demands q. Thus,
for any rationing rule ϕ there is a dual rule ϕ∗ defined by

ϕ∗(q, E) = q − ϕ(q,Q − E). (2.2)

If ϕ = ϕ∗ the rationing rule ϕ is called self-dual, i.e., the resulting shares will
be the same whether focus is on gains or losses.

Remark 2.1. Although we use the set-up of rationing it can be noted that in
terms of cost sharing the model may be given the following interpretation:
C ≥ 0 is a fixed common cost that has to be shared among n agents (com-
munities, institutions, departments, etc.) with non-negative stand-alone costs
c = (c1, . . . , cn). Cooperation is assumed to be profitable in the sense that 0 ≤
C ≤

∑
j cj . Given a cost sharing problem (c, C) a cost sharing rule ϕ specifies

a unique vector of cost shares x = ϕ(c, C) where
∑

j xj = C and 0 ≤ xj ≤ cj .
Here the latter condition appears to be a natural condition of individual ra-
tionality since no agent wants to participate in a joint project if it results in
a share of the common cost that exceeds the agents stand-alone cost. �

2.2.1 Four Rationing Rules

Some rationing rules are particularly interesting due to their historical origins
as well as wide applicability. Four such rules will now be further analysed.
As we proceed we shall see that there are several good reasons for focussing
on these particular rules.
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Basically the rules relate to two different notions of fairness: proportionality
and different versions of equality. The first three rules are:

• The Proportional Rule ϕP defined by shares

xP
i =

qi

Q
E, i = 1, . . . , n. (2.3)

That is, E is shared in proportion to individual demands.
• The Constrained Equal Gains Rule ϕCEG defined by shares

xCEG
i = min{qi, α}, i = 1, . . . , n, (2.4)

where α is chosen such that the shares add up to E. That is, E is shared
equally provided that no one gets more than their individual demand.

• The Constrained Equal Loss Rule ϕCEL defined by shares

xCEL
i = max{0, qi − β}, i = 1, . . . , n, (2.5)

where β is chosen such that the shares add up to E. That is, the loss Q−E
is shared equally provided that no one gets a negative share.

Notice, that ϕCEG(q, E) = q − ϕCEL(q,Q − E) implying that ϕCEG is
the dual rule of ϕCEL, i.e., ϕCEG∗ = ϕCEL. Moreover, since ϕP (q, E) =
q − ϕP (q,Q − E), the proportional rule is self-dual, i.e., ϕP∗ = ϕP .

The fourth rule (the Talmud rule) is an amalgam of the constrained equal-
ity rules. One line of motivation is the following: First, the rule ought to be
self-dual as gains and losses should be treated equally. Second, half of the
demand can be construed as a psychological watershed for the individual
agents. If x < q/2 the agent focuses on whatever he can get (“Less than half
is like nothing”). If x > q/2 the agent is close to fulfilment of the demand and
therefore focuses on his loss (“More than half is like the whole”). Fairness now
prescribes that all agents ought to be on the same side of the watershed and
should be treated equally. Hence, if 0 ≤ E ≤ Q/2, focus is on gains, which
shall be shared equally provided that no one get shares larger than half their
demand and if Q/2 < E ≤ Q, focus is on losses, which shall be shared equally
provided that no one get shares smaller than half their demand – that is:

• The Talmud Rule ϕT is defined by shares

xT
i (q, E) =

{
min{qi/2, α} if 0 ≤ E ≤ Q/2
max{qi/2, qi − β} if Q/2 < E ≤ Q

(2.6)

where α and β are chosen such that the shares add up to E.

Now, using the definition of the Constrained Equal Gains rule and the
Constrained Equal Loss rule we get that the Talmud rule ϕT is defined as
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ϕT (q, E) =
{

ϕCEG(q/2, E) if 0 ≤ E ≤ Q/2
q/2 + ϕCEL(q/2, E − Q/2) if Q/2 < E ≤ Q,

and consequently ϕT (q, E) = q − ϕT (q,Q − E), i.e., the Talmud rule is self-
dual. Further, note that ϕT (q,Q/2) = ϕP (q,Q/2).

In the particular case of nested 2-agent problems, i.e., problems where
q2 = E (q2 being the highest demand) we can interpret the Talmud rule as
the contested garment principle mentioned in Chap. 1. For example, if E = 1
and q = (1/2, 1) we get that Q/2 < E ≤ Q and thereby ϕT (q, E) = q/2 +
ϕCEL(1/4, 1/2, 1/4) = (1/4, 3/4), i.e., the contested half is shared equally and
the uncontested half goes to the agent demanding the entire piece of garment.
As such the above definition of the Talmud rule (introduced in Aumann and
Maschler 1985) is a modern extension of the contested garment principle to
a larger domain of rationing problems.

Now, considering all four rules we are able to state the following well-known
proposition.

Proposition 2.1. The four rationing rules, ϕP , ϕCEG, ϕCEL and ϕT are
order-preserving and resource monotonic.

Example 2.1. Consider a bankruptcy problem where n = 5 agents with
claims q = (50, 100, 150, 200, 250) must share an estate of value E = 510.
First, we get that proportional sharing results in the vector of shares

xP = (34, 68, 102, 136, 170),

whereas constrained equal sharing of gains results in

xCEG = (50, 100, 120, 120, 120).

Since the total claim is Q = 750, the total loss is 750 − 510 = 240. Thus,
constrained equal sharing of the loss results in

xCEL = (2, 52, 102, 152, 202),

and as E = 510 ≥ 375 = Q/2 we have that ϕT (q, E) = q/2 + ϕCEL(q/2, E −
Q/2) and thereby that shares according to the Talmud rule are given by

xT = (25, 50, 95, 145, 195).

Now, let the worth of the estate decrease such that E = 240 ≤ Q/2 = 375.
In this case we get:

xP = (16, 32, 48, 64, 80),
xCEG = (48, 48, 48, 48, 48),
xCEL = (0, 0, 30, 80, 130),

xT = (25, 50, 55, 55, 55).
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By resource monotonicity all agents receive weakly smaller shares than be-
fore and clearly order-preservation is confirmed in both cases. Moreover, the
results also confirm that ϕP and ϕT are self-dual rules whereas ϕCEL is the
dual rule of ϕCEG. �

Note that among the four rules, only ϕP is well defined if E and q are
measured in different units. In fact, in such a case the conditions 0 ≤ xi ≤ qi

for all i become irrelevant.

Remark 2.2. Young (1987) defines an interesting family of rationing rules
comprising the four rules above: Let f(q, λ) be a real-valued function of scalar
variables q and λ where q > 0 and λ ∈ [a, b] ⊆ [−∞,+∞]. For each x,
f is assumed to be weakly monotone increasing and continuous in λ with
f(q, a) = 0 and f(q, b) = q. Given f the rationing rule ϕ is said to be
parametric with representation f if, for every problem (q, E) that x = ϕ(q, E)
if and only if there exists a λ such that for all i,

xi = f(qi, λ) and x1 + . . . + xn = E.

Note that by the assumptions on f, 0 ≤ xi ≤ qi. Moreover, note that the
proportional rule is given by xi = λqi, 0 ≤ λ ≤ 1, where λ is chosen so
that x1 + . . . + xn = E; the constrained equal gains rule is given by xi =
min{qi, λ}, 0 ≤ λ ≤ ∞, where λ is chosen so that x1 + . . .+xn = E; and the
constrained equal loss rule is given by xi = max{0, qi − 1/λ}, 0 ≤ λ ≤ ∞,
where λ is chosen so that x1 + . . . + xn = E. �

2.2.2 Inequality Comparisons

From Example 2.1 we see that the rules differ considerably with respect to
how they distribute the shares. It seems that ϕCEG results in distributions
with the smallest spread whereas ϕCEL results in shares with the largest
spread. In case E ≤ Q/2, shares given by the proportional rule seems more
spread than shares given by the Talmud rule whereas when E ≥ Q/2 it
appears to be the other way around. In fact, such characterizations in terms
of economic inequality comparisons can be formalized using the notion of
Lorenz-domination (also known as majorization).

Formally, for two increasingly ordered n-vectors of real numbers x =
(x1, . . . , xn) and y = (y1, . . . , yn), x is said to Lorenz-dominate y if:

(1) x1 + . . . + xk ≥ y1 + . . . + yk, k = 1, . . . , n − 1.
(2) x1 + . . . + xn = y1 + . . . + yn.

The partial ordering defined by (1) and (2) is written x 
LD y and referred
to as Lorenz-domination (note that x 
LD x for any x), see, e.g., Marshall
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and Olkin (1979). In terms of economics, x 
LD y can be interpreted as x
being more equally distributed than y (less spread out).

Now, it turns out that the constrained equal gains rule ϕCEG is the unique
Lorenz-maximising rationing rule and dually, that the constraint equal loss
rule ϕCEL is the unique Lorenz-minimising rationing rule. In other words,
there is no other rule that results in more equally distributed shares than
the constraint equal gains rule and no other rule that results in less equally
distributed shares than the constraint equal loss rule.

Theorem 2.1. For any rationing rule ϕ and rationing problem (q, E),

ϕCEG(q, E) 
LD ϕ(q, E) 
LD ϕCEL(q, E).

Proof. We argue that ϕCEG is the unique maximizer of 
LD on the set of
rationing methods and hence by Proposition 2.1, ϕCEL is the unique mini-
mizer. Indeed, consider some arbitrary value E. By definition there exists a
λ and a k ∈ {1, . . . , n} such that xCEG = (q1, . . . , qk, λ, . . . , λ). Now, suppose
that there is some n-vector y originating from some allocation method where
xCEG �
LD y. Then there exists some smallest j where k < j < n such that

k∑

i=1

qi + (j − k)λ =
j∑

i=1

xCEG
i <

j∑

i=1

yi,

and hence yj > λ. However, since y is increasingly ordered it follows that∑n
i=1 xCEG

i <
∑n

i=1 yi = E, a contradiction. ��

In fact, for fixed E all four rules mentioned above are completely ordered
by Lorenz-domination since for 0 ≤ E ≤ Q/2 (or Q/2 < E ≤ Q), then
xT 
LD xP (or xP 
LD xT ).

Theorem 2.1 indicates that it is possible to construct a finite sequence
of inequality monotone transfers from xCEL to xCEG, in the sense that the
vector of shares gradually becomes more and more equal in terms of Lorenz-
domination. It is well-known that such transfers are possible (see Marshall
and Olkin 1979) but generally there is no upper bound on the number of
transfers required. However, as shown in Hougaard and Thorlund-Petersen
(2002) one needs at most n − 1 transfers in order to go from xCEL to xCEG

(and thereby xT ) as we shall demonstrate below. To be more specific, consider
a sequence of transfers from “rich” to “poor” agents; first the agent with the
largest share transfers value to all agents with smaller shares until his share
is at the same level as that of the agent with the second largest share. Then
the two agents with the highest value of shares transfer value to all agents
with smaller shares until their share is at the same level as that of the agent
with the third largest share, etc., i.e., xCEL + Tθ = xCEG where T is an
n × (n − 1) matrix
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T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . n − 1
1 1 . . . −1
...

...
. . .

...
1 −(n−2)

2 . . . −1
−(n − 1) −(n−2)

2 . . . −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and θ = (θ1, . . . , θn−1).

Example 2.1 (continued). Let n = 5, E = 510 and q = (50, 100, 150, 200, 250)
as in Example 2.1 where xCEL = (2, 52, 102, 152, 202). Therefore the first
sequence of transfers is given by 202 − 4θ1 = 152 + θ1 ⇔ θ1 = 10 – that
is, we go from xCEL to the shares x1 = (12, 62, 112, 162, 162) 
LD xCEL.
Next, we get that 162 − 1.5θ2 = 112 + θ2 ⇔ θ2 = 20 – that is, we go
from x1 to the vector x2 = (32, 82, 132, 132, 132) 
LD x1. Finally, we solve
132 − 0.66θ3 = 82 + θ3 ⇔ θ3 = 30 – that is, we go from x2 to the vector
x3 = (50, 100, 120, 120, 120) = xCEG 
LD x2, in less than 4 (= n − 1)
inequality monotone steps. �

By Theorem 2.1 we can obtain a characterization of the Talmud rule in
terms of Lorenz-domination.

Theorem 2.2 (Hougaard and Thorlund-Petersen 2002). A rationing
rule ϕ̂(q, E) ∈ R is self-dual and satisfies ϕ̂(q, E) 
LD ϕ(q, E), for 0 ≤ E ≤
Q/2, for any self-dual rule ϕ ∈ R if and only if ϕ̂(q, E) = ϕT (q, E).

Proof. First, consider a self-dual rule ϕ̂(q, E) ∈ R. By self-duality

ϕ̂(q,Q/2) = q/2,

and by resource monotonicity ϕ̂(q, E) ≤ q/2 for 0 ≤ E ≤ Q/2. Now, by
Theorem 2.1 the unique maximizer of 
LD on the set of order-preserving
rationing rules is ϕCEG. Hence, ϕ̂(q, E) = ϕCEG(q/2, E) = ϕT (q, E) for
0 ≤ E ≤ Q/2.

Second, it follows from Theorem 2.1 and the definition of the Talmud rule
that ϕT is self-dual and satisfies ϕ̂(q, E) 
LD ϕ(q, E), for 0 ≤ E ≤ Q/2. ��

In other words, the Talmud rule is the unique order-preserving, resource
monotonic and self-dual rule that maximises equality in gains or losses de-
pending on E being smaller than or larger than half the total demand.

Now, it is natural to examine which rationing rules that preserve Lorenz-
dominance in gains and in losses. We say that a rationing rule ϕ satisfies:

• Lorenz-monotonicity in Gains: If, for any E and q′ 
LD q that
ϕ(q′, E) 
LD ϕ(q, E).

• Lorenz-monotonicity in Losses: If, for any E and q′ 
LD q that q′ −
ϕ(q′, E) 
LD q − ϕ(q, E).
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Lorenz-monotonicity in gains ensures that shares become more equally
distributed when the demands become more equally distributed. Likewise,
Lorenz-monotonicity in losses ensures that the losses become more equally
distributed when the demands become more equally distributed. The two
concepts are related in the following way:

Proposition 2.2. A rationing rule ϕ satisfies Lorenz-monotonicity in Gains
if and only if its dual rule ϕ∗ satisfies Lorenz-monotonicity in Losses.

Proof. Let q′ 
LD q. Recalling the definition of duality ϕ∗(q, E) = q −
ϕ(q,Q − E), and Lorenz-dominance, we get that for all k = 1, . . . , n,

k∑

i=1

(q′i − [q′i − ϕi(q′, Q − E)]) ≥
k∑

i=1

(qi − [qi − ϕi(q,Q − E)]) ⇔

k∑

i=1

ϕi(q′, Q − E) ≥
k∑

i=1

ϕi(q,Q − E).

Hence, clearly if ϕ satisfies Lorenz-monotonicity in Gains then ϕ∗ satisfies
Lorenz-monotonicity in Losses and vice versa. ��

We are now able to show that:

Proposition 2.3. The Proportional rule ϕP satisfies Lorenz-monotonicity
in both gains and losses. The Constrained Equal Gains rule ϕCEG satisfies
Lorenz-monotonicity in gains whereas the Constrained Equal Loss rule ϕCEL

satisfies Lorenz-monotonicity in losses.

Proof. It is straight forward to see that ϕP satisfies both Lorenz-monotoni-
city in Gains and in Losses. By Proposition 2.2, it suffices to show that
ϕCEG satisfies Lorenz-monotonicity in Gains. Hence, consider ϕCEG, and let
q′ 
LD q. Let q and q′ be strictly increasing in demands. Let E be fixed, then
clearly,

∑h
i=1 q′i ≥

∑h
i=1 qi, for h = 1, . . . , n − 1, implies that λ(q′) ≤ λ(q)

where λ(q) is defined by E =
∑

i min{qi, λ(q)}.
Moreover, since 
LD is a cone-ordering (see, e.g., Marshall and Olkin

1979) we may always replace q with a convex combination αq + (1 − α)q′

such that we obtain solutions ϕCEG(q′, E) = (q′1, . . . , q
′
h, λ(q′), . . . , λ(q′)) and

ϕCEG(q, E) = (q1, . . . , qh+1, λ(q), . . . , λ(q)).
Thus, assume w.l.o.g. that Lorenz-monotonicity in Gains is violated for

index h + 1:

h∑

i=1

q′i + λ(q′) <

h∑

i=1

qi + qh+1 ⇔
h∑

i=1

q′i −
h∑

i=1

qi < qh+1 − λ(q′).
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Now, since

E =
h∑

i=1

q′i + (n − h)λ(q′) =
h∑

i=1

qi + qh+1 + (n − h − 1)λ(q)

we get that

h∑

i=1

q′i −
h∑

i=1

qi = qh+1 + (n − h − 1)λ(q) − (n − h)λ(q′) < qh+1 − λ(q′)

⇔ λ(q) < λ(q′),

a contradiction. ��

It is easy to verify that the constraint equal gains rule ϕCEG violates
Lorenz-monotonicity in Losses and that the constraint equal loss rule ϕCEL

violates Lorenz-monotonicity in Gains. Moreover, it follows that the Talmud
rule ϕT violates Lorenz-monotonicity in Losses when 0 ≤ E ≤ Q/2 and
Lorenz-monotonicity in Gains when Q/2 < E ≤ Q. Consequently, the
Talmud rule satisfies neither forms of Lorenz-monotonicity in general.

The concepts of Lorenz-monotonicity in Gains and Losses will further an-
alyzed in Sect. 2.2.4 in relation to the issue of manipulation of resulting cost
shares.

2.2.3 Axiomatic Characterizations

As a first natural property it seems that the way E is allocated should only
be determined by agents demands q and not by who the agents are. In other
words, if two agents have identical demands then a rationing rule ought to
assign identical shares to these agents, i.e., agents with equal demand should
be treated equally. If equal treatment is violated we either deliberately dis-
criminate between agents or we should be able to reformulate the problem
such that equal treatment can be met.

Formally, a rationing rule ϕ satisfies:

• Equal Treatment of Equals: If x = ϕ(q, E) and qi = qj implies that xi = xj .

Note that order-preservation implies Equal Treatment of Equals.
Second, it seems that when a group of agents agree to use some allocation

principle then this agreement should not be influenced by the number of
agents in the group. In other words, rationing rules ought to be consistent
in the sense that reallocating the sum of shares for any subgroup of agents
between the agents themselves should leave their original shares unchanged. If
some agents were to gain by applying a given rationing rule on a subset of the
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original population (including themselves) they would have strong incentives
to block any enlargement of such a group. Thereby consistency is closely
related to the concept of population monotonicity stating that the addition
of new agents should affect all original agents in the same direction (either all
gain or all loose). In fact, as demonstrated in Chun, resource monotonicity
together with consistency implies population monotonicity.

Formally, a rationing rule ϕ is:

• Consistent: If for all q, that x = ϕ(q, E) implies that for all i ∈ S, xi =
ϕi((qi)i∈S ,

∑
i∈S xi) for all S ⊆ {1, . . . , n} (S �= ∅).

Note that a rationing rule ϕ is consistent if and only if its dual rule ϕ∗ is
consistent.

All four rules defined in Sect. 2.2.1 satisfy equal treatment of equals and
consistency. In fact, together with continuity of ϕ, Equal Treatment of Equals
and Consistency characterize the entire family of parametric sharing methods
defined in Remark 2.2.

Theorem 2.3 (Young 1987). A continuous rationing rule ϕ satisfies Equal
Treatment of Equals and Consistency if and only if it is representable by a
continuous parametric function.

Proof (sketch). Let ϕ be continuous and satisfy equal treatment of equals and
consistency. First it is shown (by contradiction) that then ϕ is also resource
monotonic. Suppose that ϕ is not resource monotonic. Then by consistency
there exists a pair (x1, x2) = ϕ((q1, q2), x1+x2) and (x̄1, x̄2) = ϕ((q1, q2), x̄1+
x̄2), where x1 + x2 < x̄1 + x̄2 and x1 < x̄1, x2 > x̄2. Now, choose n such that
x1 + nx2 > x̄1 + nx̄2, and consider demand profile q̃ = (q1, q2, . . . , q2) with n
times q2. For all E ∈ [0, q1 + nq2] define

α(E) = ϕ1(q̃, E) + ϕ2(q̃, E),

which is continuous in E and α(0) = 0. Moreover, by equal treatment α(q1 +
nq2) = q1 + q2. By continuity there exists Ē ∈ [0, q1 + nq2] such that α(Ē) =
x̄1 + x̄2. By consistency and equal treatment ϕ(q̃, Ē) = (x̄1, x̄2, . . . , x̄2) with
Ē = x̄1 + nx̄2. Since α(0) = 0 ≤ x1 + x2 ≤ α(Ē) continuity of α implies that
there exists E such that 0 ≤ E ≤ Ē and α(E) = x1 +x2. By consistency and
equal treatment ϕ(q̃, E) = (x1, x2, . . . , x2) with E = x1 + nx2. By choice of
n, E = x1 + nx2 > x̄1 + nx̄2 = Ē contradicting E ≤ Ē. We conclude that ϕ
satisfies resource monotonicity.

Now suppose that ϕ satisfies strict resource monotonicity (only weak
monotonicity was shown above) then the proof could continue like this: For
every 2-agent problem and every λ ∈ [0, 1] define x1 = f(q1, λ) if and only
if (x1, λ) = ϕ((q1, 1), x1 + λ). Continuity and strict monotonicity of ϕ imply
that f is continuous and strictly monotonic in λ. Now, fix x∗ = ϕ(q, E∗)
where E∗ ∈ [0,

∑
i qi]. Consider (x, λ) = ϕ((q, 1), E) as E varies from 0 to∑

i qi + 1. By continuity there exists a Ē that renders agent 1 and 2 a total
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of x∗
1 +x∗

2 which by consistency must be allocated as (x∗
1, x

∗
2). Likewise there

exists a Ẽ that renders agent 1 and 3 a total of x∗
1 + x∗

3 that must be allo-
cated as (x∗

1, x
∗
3). As ϕ is strictly monotonic and agent 1 receives the same

amount in both cases Ē = Ẽ. Continuing this argument there is a value E∗

and a value λ∗ such that ϕ((q, 1), E∗) = (x∗, λ∗). Consistency implies that
(x∗

i , λ
∗) = ϕ((qi, 1), x∗

i + λ∗) so by definition of f, x∗
i = f(xi, λ

∗) for all i.
Conversely, suppose that f(qi, λ) = xi for some λ and all i. The above

argument implies that there exists a λ′ such that f(qi, λ
′) = x′

i where
∑

i x′
i =∑

i xi. Since f is monotonic in λ, x′
i = xi for all i and f is a parametric

representation of ϕ.
For the exact proof the reader is referred to Young (1987) which also

demonstrates that, in fact, only pairwise consistency is needed in the sense
that consistency only has to be satisfied for all coalitions of cardinality two.

��

Example 2.1 (continued). Consider the 5-agent problem of Example 2.1 with
q = (50, 100, 150, 200, 250) and E = 510. Here the Talmud rule resulted in the
following allocation xT = (25, 50, 95, 145, 195). It is easily checked that for any
subset of the agents, application of the Talmud rule results in consistency. For
example the sub-problem of q = (50, 100) and E = 75. Here Q/2 = 75 = E
and E is shared in proportion to demands or, interpreted along the lines of the
contested garment principle; 50 is contested and hence shared equally whereas
the residual of 25 is only claimed by agent 2 – hence the allocation becomes
(25, 25+25). For any 2-agent rationing problem (q1, q2, E) the “contested-
garment” principle can be defined (as in Aumann and Maschler 1985) by the
shares,

x1 =
1
2

min{q1, E} +
1
2

max{0, E − q2},

x2 =
1
2

min{q2, E) +
1
2

max{0, E − q1}.

As shown in Aumann and Maschler the Talmud rule is the unique consistent
extension of the contested garment principle. �

In order to single out the rules of Sect. 2.2.1 further axioms are needed. For
example an axiom of scale invariance to rule out any influence of the units
of measurement. In case of a bankruptcy problem, for instance, it seems
very natural to demand that the underlying allocation principle should be
independent of whether we measure in Danish kroner, dollars or euro’s.

Formally, a rationing rule ϕ satisfies:

• Scale Invariance: If for all (q, E) and λ ∈ R+,

ϕ(λq, λE) = λϕ(q, E).

Note that all four rules of Sect. 2.2.1 satisfy Scale Invariance.
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The next two axioms may be interpreted along the following line: Assume
that a group of agents have agreed to use a given rationing rule ϕ for some
rationing problem (q, E′). However, it turns out that the true value of the
amount that has to be shared is E < E′. Then using ϕ we should be able
to take the solution ϕ(q, E′) and solve the problem (ϕ(q, E′), E) instead of
(q, E) – called Upper Composition. On the other hand, if E > E′ we should
be able to determine ϕ(q, E) by adding the solution of the problem (q −
ϕ(q, E′), E − E′) to the solution ϕ(q, E′) – called Lower Composition.

Formally, a rationing rule ϕ satisfies:

• Upper Composition: If, for all (q, E) and E′ > E,

ϕ(q, E) = ϕ(ϕ(q, E′), E).

• Lower Composition: If, for all (q, E) and E′ < E,

ϕ(q, E) = ϕ(q, E′) + ϕ(q − ϕ(q, E′), E − E′).

Note that a rationing rule ϕ satisfies Lower Composition if and only if its
dual rule ϕ∗ satisfies Upper Composition. Moreover, note that the Propor-
tional rule, the Constrained Equal Gains rule and the Constrained Equal Loss
rule satisfy Upper and Lower Composition whereas the Talmud rule satisfies
neither Upper nor Lower Composition.

Theorem 2.4 (Moulin 2000). A rationing rule ϕ satisfies Equal Treatment
of Equals, Consistency, Scale Invariance, Upper and Lower Composition if
and only if ϕ ∈ {ϕP , ϕCEG, ϕCEL}.

It has already been noted that all three rules {ϕP , ϕCEG, ϕCEL} satisfy
the axioms. To prove the converse, the reader is referred to the elaborate
proof in Moulin (2000) or the alternative proof in Thomson (2006).

Finally, there are several alternative characterizations of the individual
rules; a recent survey can be found in Thomson (2003).

2.2.4 Manipulation

When rationing rules are implemented in practice they may give rise to strate-
gic reactions among the agents involved. In other words, agents (or some
coalition of agents) may be able to manipulate the result of given rules to
their own advantage. Since each individual demand qi is considered to be
verifiable, manipulation is not possible via strategic choice of qi. Hence, ma-
nipulation can appear either by merging or splitting individual demands or
by reallocating demand between groups of agents. Notice that by merging or
splitting demands the dimension of the rationing problem is changed whereas
by reallocation the dimension remains fixed.
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Rationing rules are non-manipulable by merging and splitting if it is dis-
advantageous for any coalition of agents to merge and split their demands in
the sense that the resulting aggregated or disaggregated shares are smaller
than the shares resulting from the original problem of dimension n. That is,
rationing rules ϕ must satisfy:

• No Advantageous Merging: Let E be given and let q′ be determined
by aggregating the demand of a subset M of the n agents, i.e., q′ =
(
∑

j∈M qj , (qi)i∈N\M ) for M ⊂ N = {1, . . . , n}. For all such coalitions
M ⊂ N, ϕM (q′, E) ≤

∑
j∈M ϕj(q, E).

and

• No Advantageous Splitting: Let E be given and let q̂ be determined by
splitting the demand of agent j into s separate demands (qji)s

i=1 where∑s
i=1 qji = qj – that is, q̂ = ((qji)s

i=1, (ql)l∈N\j). For all such disaggregated
demands (qji)s

i=1,
∑s

i=1 ϕji(q̂, E) ≤ ϕj(q, E).

Theorem 2.5 (Banker 1981; De Frutos 1999). The proportional rule
ϕP is the only rationing rule that satisfies both No Advantageous Merging
and No Advantageous Splitting.

Proof. It is easy to verify that ϕP satisfies No Advantageous Merging and
Splitting. To prove the converse, let for given q, q′ = (qi, Q−qi) be the demand
of an arbitrary agent i and coalition M = N \ i. First, note that No Advanta-
geous Merging and Splitting implies that

∑
j∈M ϕj(q, E) = ϕM (q′, E) and by

budget balance ϕi(q, E) = ϕi(q′, E). Secondly, note that No Advantageous
Merging and Splitting implies Equal Treatment of Equals: Suppose not. Then
there exists a pair (i, j) with qi = qj = q̄ where ϕi(q, E) > ϕj(q, E). By the
above argument ϕi((q̄, Q − q̄), E) > ϕj((q̄, Q − q̄), E). Now, let agent i split
the demand into two equal amounts. Then

ϕi((q̄, Q − q̄), E) = ϕi′((q̄/2, q̄/2, Q − q̄), E) + ϕi′′((q̄/2, q̄/2, Q − q̄), E)

> ϕj((q̄, Q − q̄), E),

that is, agent j has incentive to split his demand – a contradiction.
To finish the proof, note that for any vector q ∈ Rn, every element can be

written as
qi =

ai

p
Q,

where p > 0 and ai is non-negative number such that a1 + . . .+an = p. Now,
let p agents each demand Q/p. Then Equal Treatment of Equals and budget
balance implies that each of the p agents receives the share E/p. Moreover,
as ϕi = ϕi′ + ϕi′′ when qi = qi′ + qi′′ then by sequential merging or splitting
of the demand of the p agents, coalitions i receive

ϕi = ai
E

p
=

qi

Q
E, i = 1, . . . , n.

��
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Example 2.2 (continued). Consider the 5-agent problem of Example 2.1 with
q = (50, 100, 150, 200, 250) and E = 510. Here the Talmud rule resulted in
the following allocation ϕT (q, E) = (25, 50, 95, 145, 195). Now, assume that
agent 1 and 2 merge such that q{1,2} = q1+q2 = 150. In this case the rationing
problem is reduced to a 4-agent problem where ϕT ((150, 150, 200, 250), 510) =
(90, 90, 140, 190) making it advantageous for agent 1 and 2 to merge as
ϕT

1 (q, E) + ϕT
2 (q, E) = 75 < 90. Now, consider the problem (q, E) where

E = 240. Here, ϕT (q, E) = (25, 50, 55, 55, 55). Let agent 3 split his de-
mand q3 = 150 into q3′ = 50 and q3′′ = 100. In this case the problem
is extended to a 6-agent problem ((50, 50, 100, 100, 200, 250), 240) where
ϕT ((50, 50, 100, 100, 200, 250), 240) = (25, 25, 47.5, 47.5, 47.5, 47.5) making it
advantageous for agent 3 to split his demand as ϕT

3 (q, E) = 55 < 25+47.5 =
72.5. Hence, the Talmud rule can be manipulated both by merging and by
splitting. This is a consequence of the fact that the Constrained Equal Gains
rule can be manipulated by splitting and that the Constrained Equal Loss
rule can be manipulated by merging as clarified in Remark 2.3. �

Remark 2.3. Recall the definition of parametric rules with representation
f in Remark 2.2. The representation f is said to be superadditive (sub-
additive) in demand if for all λ and all qi, q

′
i ∈ R+ that f(qi + q′i, λ) ≥

(≤) f(qi, λ)+f(q′i, λ). In Ju (2003), it is shown that a parametric rule satisfies
No Advantageous Merging if and only if the representation f is subadditive
in qi for each value of λ. Likewise a parametric rule satisfies No Advanta-
geous Splitting if and only if the representation f is superadditive in qi for
each value of λ. As the Constrained Equal Gains rule has parametric rep-
resentation f(qi, λ) = min{qi, λ}, f is concave and hence subadditive in qi,
i.e., satisfies non-manipulability by merging. As the Constrained Equal Loss
rule has parametric representation f(qi, λ) = max{0, qi − 1/λ}, f is convex
and hence superadditive in qi, i.e., satisfies non-manipulability by splitting.
Finally, note that the proportional rule has representation f(qi, λ) = λqi

that is linear and hence both sub- and superadditive in qi, i.e., satisfies non-
manipulability by both merging and splitting. (On the other hand note, that
there may be functions f that are sub- resp. superadditive and not concave
resp. convex.) �

As mentioned above, there is another way to manipulate the resulting
shares and that is by reallocating demand between groups of agents keeping
the number of agents fixed. If such manipulation shall be prevented no coali-
tion of agents shall be able to increase their total share by reshuffling their
individual demands – that is, the rationing rule ϕ must satisfy:

• No Advantageous Reallocation: Let E be given. Then for every S ⊂ N and
q, q′ ∈ Rn

+, if
∑

i∈S qi =
∑

i∈S q′i and qj = q′j for all j ∈ N \ S, it implies
that

∑
i∈S ϕi(q, E) =

∑
i∈S ϕi(q′, E).
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Note that No Advantageous Reallocation is only meaningful in case
|N | ≥ 3. It is clear that the proportional rule ϕP satisfies No Advantageous
Reallocation. The other three rules, however, do not as demonstrated by the
following example.

Example 2.1 (continued). Consider the 5-agent problem of Example 2.1 with
q = (50, 100, 150, 200, 250) and E = 510. Here the Constrained Equal Gains
rule resulted in the following allocation

ϕCEG(q, E) = (50, 100, 120, 120, 120).

Assume now that agent 1, 2 and 3 form a coalition where they average their
demands such that the reallocated demand vector becomes

q′ = (100, 100, 100, 200, 250).

Using the Constrained Equal Gains rule we get that

ϕCEG(q′, E) = (100, 100, 100, 105, 105)

making it advantageous for agent 1, 2 and 3 to perform their averaging op-
eration. Likewise, consider the Constrained Equal Loss rule that resulted in
the following allocation ϕCEL(q, L) = (2, 52, 102, 152, 202). If the agents 1,2
and 3 now spread their demands such that the new demand vector becomes
q′′ = (0, 100, 200, 200, 250), we get that ϕCEL(q′′, E) = (0, 40, 140, 140, 190)
making it advantageous for agents 1,2 and 3 to reallocate as in q′′. Since
both the Constrained Equal Gains rule and the Constrained Equal Loss rule
fail to satisfy No Advantageous Reallocation so does the Talmud rule by
definition. �

By Proposition 2.3 and order-preservation, it can generally be concluded
that the Constraint Equal Gains rule can be manipulated by all lower
coalitions {1, . . . , k} averaging their demands (as q′ 
LD q implies that
∑k

i=1 ϕCEG
i (q′, E) ≥

∑k
i=1 ϕCEG

i (q, E) for k = 1, . . . n − 1.). Likewise, it
can generally be concluded that the Constraint Equal Loss rule can be
manipulated by all lower coalitions {1, . . . , k} spreading their demands (as
q′ 
LD q implies that

∑k
i=1(q

′
i − ϕCEG

i (q′, E)) ≥
∑k

i=1(qi − ϕCEG
i (q, E)) for

k = 1, . . . n − 1.).
In fact, it can be shown that the Proportional rule is the only rule that

cannot be manipulated by reallocation of demands.

Theorem 2.6 (Moulin 1987). The proportional rule ϕP is the only
rationing rule that satisfies No Advantageous Reallocation.
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Proof (sketch). From Chun (1988) it is known that all rules that satisfy No
Advantageous Reallocation (plus a weak continuity and symmetry property)
are of the following form for all i = 1, . . . , n,

ϕi(q, E) =
qi

Q
E − 1

Q
[nqi − Q]g(Q,E),

where g : R2 → R is a continuous function. Since we require that a rationing
rule must satisfy 0 ≤ ϕi(q, E) ≤ qi for all i, we have that g(Q,E) = 0. ��

Note that the equal split rule (which is not a rationing rule as defined
above since E/n may exceed qi for some i), satisfies No Advantageous Re-
allocation (g(Q,E) = E/n) but is manipulable by splitting. Likewise, equal
split of the loss (that may result in negative shares) satisfies No Advantageous
Reallocation (g(Q,E) = (E − Q)/n) but is manipulable by merging.

To demonstrate that there is a close connection between No-advantageous
Reallocation and Lorenz-monotonicity, as defined in Sect. 2.2.2, we recon-
sider the Lorenz-monotonicity properties in light of manipulation. Indeed,
due to order-preservation the Lorenz-monotonicity properties may be con-
strued as follows: Suppose that some lower coalition of agents (ordered by
the size of their demands) equalize their demands resulting in a new vec-
tor of demands that Lorenz-dominates the original demand vector. In this
case, Lorenz-monotonicity in gains requires that such a reallocation is not
disadvantageous for this lower coalition. Consequently, if a rationing method
satisfies Lorenz-monotonicity in gains then it cannot be manipulated be any
lower coalition spreading their demands (without changing the rank of agents
according to demand). Likewise, Lorenz-monotonicity in losses concerns a
spread of demands; If a rationing method satisfies Lorenz-monotonicity in
losses then its resulting vector of shares cannot be manipulated by any lower
coalition equalizing their demands.

Thus, if a rationing method satisfies Lorenz-monotonicity in both gains
and losses it cannot be manipulated by any lower coalition of agents spreading
or equalizing their demands. In fact, we are able to provide the follow-
ing alternative characterization of the proportional rule based on Lorenz-
monotonicity.

Theorem 2.7 (Hougaard and Østerdal 2005). The Proportional rule
ϕP is the only continuous and order-preserving rationing rule that satisfies
Lorenz-monotonicity in both gains and losses.

Note that Lorenz-monotonicity in Gains and Losses together are weaker
than No-Advantageous Reallocation (on the other hand, Moulin’s charac-
terization – as in Theorem 2.6 – is not limited to order-preserving rules).
In Proposition 2.3 it is shown that the Proportional Rule satisfies Lorenz-
monotonicity in both gains and losses. For a proof of the converse claim the
reader is referred to Hougaard and Østerdal (2005).
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2.2.5 Comments

Before turning towards cost sharing with a common cost function as in sce-
narios (2) and (3) in Sect. 2.1, a few final comments concerning the rationing
model will be made.

First, even though all claims are verifiable not all claims may be viewed
as equal from the outset. For example, in cases concerning bankruptcy of
firms Danish law states that in principle all claimants are equal and that
the estate should be allocated according to the proportional rationing rule.
However, some groups of claimants are favored: In case of unpaid salaries,
employees have a so-called privileged claim that will be covered (or partly
covered according to the size of the estate) before other claimants get their
share of the estate. As such, agents may be ranked according to some prespec-
ified list of priority and their claims handled accordingly. From a theoretical
point of view there is an interesting generalization of the contested garment
principle based on random priorities (O’Neill 1982): In particular if there are
two agents, shares corresponding to the use of the contested garment princi-
ple can be found as the average of the shares in two situations – one where
agent 1 has priority over 2 and one where 2 has priority over 1. In general,
there are n! possible orderings of n agents. For each such ordering let agents
receive as much of their demand as possible, that is if E > q1 then x1 = q1

and if E − x1 > q2 then x2 = q2, etc. Now, the random priority rule assigns
shares which are then defined as the average over all such orderings for each
agent. In general, concerning models of priority, each agent is described not
only by their demand (or claim), but by a combination of their demand and
type. Another well known type is “time of arrival” – here a rule could be
the familiar “first to arrive on the spot is the first to be served” rule which
clearly violates order-preservation in terms of demand. For further discussion
of priority rules see, e.g., Moulin (2000, 2002).

Secondly, as noticed by Young (1987, 1988) the entire rationing model
may alternatively be construed as a taxation problem where the sum of taxes
x1 + . . .+xn must equal a given revenue constraint E and qi is the pre-tax in-
come of agent i (post-tax incomes are hence given by qi−xi). Thus, the above
results have a “dual” interpretation with respect to the taxation model (q, E).
For example, in Theorem 2.7 it was demonstrated that the proportional
rationing rule was the only (order-preserving) rule that satisfied both Lorenz-
monotonicity in Gains and Losses. In terms of the taxation model this result
reads: Proportional taxation – called a flat tax – is the only taxation rule that
preserves equality in the sense that if pre-tax incomes become more equally
distributed then both taxes and post-tax incomes become more equally dis-
tributed. Note that in case of taxation it could naturally be argued that the
post-tax income of the agent i should be independent of the other agents pre-
tax incomes q−i. The distributional aspects of taxation rules with respect to
such a taxation model is, for example, examined in Moyes (1989, 1994).
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2.3 Cost Sharing with Joint Cost Function

Suppose that n agents are engaged in a joint project. Let N = {1, . . . , n}
denote the set of agents. Moreover, let q = (q1, . . . , qn) be a vector of non-
negative demands qi ∈ R+ of each agent i for some homogeneous good (hence
demand is not necessarily measured in monetary units). Assume for simplicity
that these demands are increasingly ordered q1 ≤ . . . ≤ qn. Since the demand
of each agent refer to the same (homogeneous) good we shall focus on two
particular cases: one where the joint cost is a function of total demand Q =
q1 + . . . + qn (homogeneous cost functions), and one where the joint cost
is a function of maximal demand Q = maxi{qi} = qn (decomposable cost
functions), see, e.g., scenarios (2) and (3) of the Introduction.

For fixed N , let (q, C) be a cost sharing problem where C : R+ → R+ is
a (one-dimensional) non-decreasing cost function with C(0) = 0 and denote
by D the set of such cost sharing problems. For a given cost sharing problem
(q, C) ∈ D, a cost sharing rule φ specifies a unique vector of cost shares
x = (x1, . . . , xn) = φ(q, C) where the cost shares xi add up to the total costs
C(Q) or C(Q).

In practice, the cost function may be construed either as the costs of
production or as a pricing scheme faced by the agents. In the latter case this
pricing scheme can be used directly. In the former case, the cost function can
be estimated using registered cost data.

Remark 2.4. Although we shall use the framework of cost sharing it can
be noted that in terms of sharing some worth (surplus sharing) the model
may be given the following equivalent interpretation: suppose that agents
N = 1, . . . , n are engaged in a joint project. Let q = (q1, . . . , qn) be a vector
of homogeneous characteristics qj ∈ R+, for example, individual working
hours supplied for the joint project. If working hours supplied by different
agents are considered as homogeneous we may focus on the total number of
working hours supplied Q = q1 + . . . + qn and thereby on a one-dimensional
non-decreasing value function V : R+ → R+ with respect to Q. Hence,
(q, V ) is a surplus sharing problem and φ is a surplus sharing rule specifying
a unique vector of surplus shares y = (y1, . . . , yn) = φ(q, V ) where y1 + . . . +
yn = V (Q). �

2.3.1 Rules Based on Equality and Proportionality

Within the framework of cost sharing problems (q, C) ∈ D, the proportional
rule of the rationing model is known as

• The Average Cost Rule φAC , defined by cost shares

xAC
i =

qi

Q
C(z), i = 1, . . . , n, (2.7)
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where z = Q in case of homogeneous costs and z = Q in case of decom-
posable costs.

The name refers to the fact that all agents pay the average price, C(z)/Q
for all units demanded. Thus, φAC is order-preserving, i.e., xAC

1 ≤ . . . ≤ xAC
n

when q1 ≤ . . . ≤ qn.
In case of homogeneous cost functions C(Q), the connection with the pro-

portional rule of the rationing model implies that the average cost rule can
be characterized by the same properties as the proportional rationing rule.
In particular, the result of the average cost rule cannot be manipulated by
neither reallocation nor by merging or splitting of demands.1 However, one
further general characterization is interesting since it relates to a monotonic-
ity property that may be viewed as extending the resource monotonicity
property of the rationing model to the present framework. This monotonicity
property is defined as follows:

• Monotonicity: Let C1, C2 ∈ D and let C1(z) ≤ C2(z) for all z. Then
φi(q, C1) ≤ φi(q, C2) for all i and all q.

In other words, Monotonicity states that all agents should benefit from a
new technology that reduces costs. Cost sharing rules satisfying Monotonicity
hence ensures that all agents have incentive to innovate and use cost reducing
technologies. Now, this property proves rather powerful since together with
a natural property related to linear cost functions (Constant Returns) it ac-
tually characterizes the average cost rule. The property of Constant Returns
states that if the cost function is linear in total demand then there is a natural
cost share per unit demanded, i.e., the constant average cost. Formally

• Constant Returns: If C(z) = λz for all λ ≥ 0 then φi(q, C) = λqi for all i.

Indeed,

Theorem 2.8 (Moulin and Shenker 1994). The Average Cost Rule φAC

is the only cost sharing rule that satisfies Monotonicity and Constant Returns.

The formal proof may be found in Moulin and Shenker (1994). At first
sight, this result seems somewhat surprising since if we stick to the idea that
everybody should be held responsible for their own demand and not share
according to some degree of egalitarianism (which is basically the message
of Constant Returns) then we cannot guarantee that all agents would gain
from a general cost reduction using any alternative to average cost sharing.
But as we shall see, this is closely linked to the fact the average cost rule only
relates to the total cost C(Q) and not to other parts of the cost function.

1 Clearly, the average cost rule can be manipulated in case of decomposable cost
functions, however, it is questionable whether there exists situations where a decom-
posable cost function is a proper description of the cost structure and where it makes
sense to talk about agents equalizing or splitting their demands.
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Example 2.2. If the agents know how the total cost of the group will be
shared, it is easy to imagine a variety of situations where it would be natural
for them to act strategically in their choice of demand. However, if the cost
function is concave and they share costs using the Average Cost rule, a Nash
equilibrium in the induced cost sharing game may not exist.

Consider the following example2 where two agents jointly buy long-
distance calls from AT&T at a (concave) two-part tariff “the One Rate 7c
Plus”, i.e., total cost is given by the function C(q1+q2) = 0.07(q1+q2)+4.95.
Let the benefit h(·) from demanding quantity (minutes calling) q be given by,

h1(q1) =

⎧
⎨

⎩

0.55q1 if q1 ∈ [0, 10)
0.12q1 + 4.3 if q1 ∈ [10, 30)
7.9 if q1 ∈ [30,∞),

and

h2(q2) =
{

0.17q2 if q2 ∈ [0, 30)
5.1 ifq2 ∈ [30,∞),

respectively. Hence, using the average cost rule φAC and maintaining the as-
sumption that both agents have quasi-linear utility functions, i.e., ui(qi, qj) =
hi(qi) − φAC

i , induces a cost sharing game with pay-off’s given by,

u1(q1, q2) = h1(q1) − 0.07q1 −
q1

q1 + q2
4.95,

and
u2(q1, q2) = h2(q2) − 0.07q2 −

q2

q1 + q2
4.95.

Now, this results in the following “best reply” correspondences for agent 1
and 2 respectively,

q∗1(q2) =

⎧
⎨

⎩

30 if q2 ∈ [0, 5.6]
10 if q2 ∈ [5.6, 53.4]
30 if q2 ∈ [53.4,∞),

and

q∗2(q1) =
{

0 if q1 ∈ [0, 19.5]
30 if q1 ∈ [19.5,∞).

Clearly, no equilibrium exists in this particular case since if agent 1 demands
10 then agent 2 will demand 0 and if agent 2 demands 0 then agent 1 will
demand 30 – but if agent 1 demands 30 then agent 2 will demand 30 and in
this case agent 1 will rather demand 10, etc.

2 Kindly provided by Lars Thorlund-Petersen.
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However, notice that if the agents announce their demand in a sequence
and these announcements are observable by the other agents, then an equi-
librium will exist. For example, let agent 1 determine his demand first
and let this be observed by agent 2, who then determines his demand.
In this case backward induction gives the (subgame-perfect) equilibrium
(q∗1 = 30, q∗2 = 30).

Moreover, implementation in Nash equilibrium is generally possible in case
the cost function C is convex, see, e.g., Watts (1996). �

Egalitarianism becomes a relevant alternative because, contrary to the
scenario of the rationing model, the present framework does not initially
exclude,

• The Equal Split Rule, φE , defined by cost shares,

xE
i =

C(z)
n

, i = 1, . . . , n, (2.8)

where z = Q in case of homogeneous costs and z = Q in case of decom-
posable costs.

Clearly, the equal split rule φE is (trivially) order-preserving and satisfies
Monotonicity but not Constant Returns.

Now, both the average cost rule and the equal split rule only relates to the
total cost while the information contained by the rest of the cost function is
“ignored”. For example, it could be argued that the level of the stand-alone
cost C(qi) for each agent i ought to influence the final allocation of costs.
An immediate way to meet such a requirement could be to allocate costs in
proportion to stand-alone costs instead of demands, i.e., to use cost shares,

xi =
C(qi)∑

j∈N C(qj)
C(Q), for i = 1, . . . , n (2.9)

(with the obvious changes for a decomposable cost function). Note that for
homogeneous cost functions this version of proportional cost sharing satisfies
Constant Returns but not Monotonicity. The problem with Monotonicity
occurs because the rule exploits other parts of the cost function (the stand-
alone costs) than just the total cost, while satisfying Constant Returns.

In the same spirit, cost could be allocated using constrained equal split

x1
i = min

{

C(qi),
C(Q)

n

}

for i = 1, . . . , n (2.10)

and adding an equal share of any resulting deficit, i.e., 1/n[C(Q)−
∑

j∈N x1
j ]

(with the obvious changes for a decomposable cost function). Note, that for
homogeneous cost functions this version of egalitarianism satisfies neither
Constant Returns nor Monotonicity. Further, note that, except for (2.9) with



2.3 Cost Sharing with Joint Cost Function 39

respect to a decomposable cost function, none of these suggestions guarantee
individual rationality, i.e., that no agent pays more than his stand-alone cost.

In case of decomposable cost functions C(Q), however, there is a more
direct way to ensure individual rationality. For example, we may define the
restricted equal split rule by cost shares,

xRE
i = min{C(qi), α}, i = 1, . . . , n, (2.11)

where α is chosen such that the cost shares add up to total costs C(Q). This
rule captures the spirit of the constrained equal gains rule of the rationing
model. We may further define the restricted average cost rule by the following
cost sharing scheme: First, calculate shares

x1
i = min

{

C(qi),
qi

Q
C(Q)

}

, i = 1, . . . , n. (2.12)

If some agents are bounded by their stand-alone cost the remaining agents
must further share C(Q) −

∑n
i=1 x1

i in proportion to their demand and so
forth until total costs are fully allocated.

However, knowledge of the entire cost function opens up for the definition
of types of rules that has not been treated so far since costs related to any
subset of agents can be assessed. As argued such information, if accessible,
may influence the way that costs (or value) should be shared. In the follow-
ing we consider cost sharing rules based on two main principles: the serial
principle and the incremental principle.

2.3.2 Rules Based on the Serial Principle

The serial principle basically states that agents with equal demand must
be treated equally and that, according to a given ordering of demands, an
agent’s cost share should not depend on the demand of agents that appear
after him in the ordering. The spirit of the serial principle is perhaps most
clearly illustrated in case of decomposable cost functions.

2.3.2.1 Serial Cost Sharing: Decomposable Costs

We start out by demonstrating that sharing costs equally or in proportion
to individual demand qi may, in case of a (non-decreasing) decomposable
cost function C(Q), lead to violation of the stand-alone cost principle as
illustrated by the following simple example.

Example 2.3. Let three agents have demands q = (q1, q2, q3) = (1, 2, 3) with
associated stand-alone costs C(q1) = 100, C(q2) = 800 and C(q3) = 900.
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Since the cost function is decomposable, the total cost of a joint project is
C(q3) = 900. Now, if the total cost is shared equally, all agents pay xE = 300.
If, instead we use average cost sharing we get:

xAC =
(

1
6
900,

1
3
900,

1
2
900

)

= (150, 300, 450).

Notice, that in both cases, agent 1 will end up paying more than the stand-
alone cost of 100. Moreover, notice that both methods only use individual
demands q and the total costs C(q3) as relevant information whereas the
information contained by the remaining part of the cost function is ignored. �

Although lack of individual rationality can be ensured using the restricted
versions defined in (2.11) and (2.12), it seems natural to look for alternative
cost sharing rules, where more of the information contained by the cost func-
tion is utilized. Indeed, one may suggest to use equal sharing but with respect
to incremental costs, rather than total cost, following the serial principle.

Consider, for example, three agents with demands q1 ≤ q2 ≤ q3, and total
joint cost C(q3). If all agents had demanded q1 the total cost of C(q1) should
be split equally (according to “equal-treatment-of-equals”), i.e., all agents get
cost share 1/3C(q1). Now, the incremental cost in going from demand q1 to
q2 should be split equally among agents 2 and 3 as they alone are responsible
for this demand, i.e., both agents 2 and 3 further pay 1/2(C(q2) − C(q1)).
Finally, only agent 3 is responsible for the incremental demand going from q2

to q3 and should consequently cover the associated incremental costs alone,
i.e., agent 3 further pays C(q3) − C(q2). Thus, total cost is shared as

x1 =
C(q1)

3
, x2 =

C(q1)
3

+
C(q2) − C(q1)

2
,

x3 =
C(q1)

3
+

C(q2) − C(q1)
2

+ C(q3) − C(q2).

As such, cost shares found using the serial principle can never exceed the
stand-alone cost of any agent in case of decomposable cost functions.

In general, for a decomposable cost function we say that cost shares are
associated with the serial cost sharing rule if they are determined as

xj =
j∑

k=1

C(qk) − C(qk−1)
n − k + 1

, j = 1, . . . , n, (2.13)

where x0 = C(q0) = 0.

Example 2.3 (continued). Use of the serial cost sharing rule will, in the case
of Example 2.2., result in cost shares x1 = 33.33, x2 = 33.33 + 350 = 383.33
and x3 = 33.33 + 350 + 100 = 483.33. Clearly, no agent pays more than their
stand-alone cost by this method. Of course, we could have used restricted
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versions of equal split and average cost sharing to ensure that no agent pays
more than their stand-alone cost (i.e., comply with individual rationality). In
case of restricted equality, this would result in cost shares xRE

1 = 100, xRE
2 =

xRE
3 = 100 + 300 = 400 whereas in case of restricted average cost sharing,

resulting cost shares are given by xRAC
1 = 100, xRAC

2 = 300 + (2/5)50 = 320
and xRAC

3 = 450 + (3/5)50 = 480. �

2.3.2.2 Serial Cost Sharing: Homogeneous Costs

Consider now a (non-decreasing) homogeneous cost function C(Q) and de-
note by D̂ and Ď the set of cost sharing problems with convex and concave
homogeneous cost functions, respectively. Finally, denote by D+ = D̂+Ď the
set of cost sharing problems where the homogeneous cost function equals a
sum of a convex and a concave cost function.

The basic motivation behind serial cost sharing in case of homogeneous
cost functions (as introduced in Shenker 1995 and Moulin and Shenker 1992)
is given by the serial principle, i.e., agents with identical demand should be
treated equally and no agent will be held responsible for the consumption of
“greedier” agents even though they are associated with a joint project.

Consider, for example, three agents with individual demands q1 ≤ q2 ≤ q3,
and total cost C(q1 + q2 + q3). Cost shares according to serial cost sharing
is found as follows: The agent with the smallest demand pays one-third (an
equal share) of the total costs in case all agents had been as “modest” as
agent 1 in their demands. The second agent further pays half (an equal share)
of the incremental cost in going from a situation with total demand 3q1 to
total demand q1 + 2q2 – that is, to a situation where agent 1 demands q1

and the remaining agents are as “modest” as agent 2. Finally agent 3 further
pays the incremental cost of going from a situation with total demand of q1 +
2q2 to a total demand of q1 + q2 + q3. This leaves the agents with cost shares,

xIS
1 =

1
3
C (3q1)

xIS
2 =

1
3
C(3q1) +

1
2
(C(q1 + 2q2) − C(3q1))

xIS
3 =

1
3
C(3q1) +

1
2
(C(q1 + 2q2) − C(3q1)) + C(q1 + q2 + q3) − C(q1 + 2q2).

Clearly, xIS
1 + xIS

2 + xIS
3 = C(q1 + q2 + q3), and the cost share of agent i

is independent of the demands of agents j > i.
Now, the serial rule has a natural mirror-image commencing with the agent

having the largest demand instead of the agent having the smallest demand,
as suggested in De Frutos (1998). Intuitively, no agent will be held responsible
for the consumption of agents with smaller demands even though they are
associated with a joint project. In this case the resulting cost shares will be,
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xDS
3 =

1
3
C(3q3)

xDS
2 =

1
3
C(3q3) +

1
2
(C(q3 + 2q2) − C(3q3))

xDS
1 =

1
3
C(3q3) +

1
2
(C(q3 + 2q2) − C(3q3)) + C(q1 + q2 + q3) − C(q3 + 2q2).

Again, clearly xDS
1 + xDS

2 + xDS
3 = C(q1 + q2 + q3), and the cost share

of agent i is independent of the demands of agents j < i. However, in this
case agents are not guaranteed non-negative cost shares for problems in D.
In general, non-negative cost shares are only guaranteed for problems in Ď,
i.e., for concave cost functions.

Remark 2.5. The cost shares of serial cost sharing are characterized by some
degree of independence of other agents demands. At first sight, this seems to
be in line with straightforward ideas of fairness. However, if consumption of
the produced good involves externalities such an independence may seem less
appealing. For example, in case the cost function is related to a vaccination
program, agents with zero demand pay zero but potentially benefit from
the consumption of agents demanding the vaccine. Hence, the presence of
externalities calls for the use of alternative rules or further knowledge about
the agents individual utility functions. �

2.3.2.3 Increasing, Decreasing and Mixed Serial Rules

In general, consider the case of n agents. Let the vector of demand q define
intermediate production levels given by vectors r ∈ Rn and s ∈ Rn as,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r1

r2

r3

...
rn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n 0 0 . . . 0
1 n − 1 0 . . . 0
1 1 n − 2 . . . 0
...

...
...

...
1 1 1 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q1

q2

q3

...
qn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s1

s2

s3

...
sn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n 0 0 . . . 0
1 n − 1 0 . . . 0
1 1 n − 2 . . . 0
...

...
...

...
1 1 1 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

qn

qn−1

qn−2

...
q1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Since demands are increasingly ordered we get that, r1 ≤ . . . ≤ rn =
Q = sn ≤ . . . ≤ s1. Now, define the Increasing resp. Decreasing Serial Cost
Sharing Rule as follows:
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Increasing Serial Cost Sharing φIS is defined by cost shares

xIS
i =

i∑

k=1

C(rk) − C(rk−1)
n + 1 − k

, i = 1, . . . , n, (2.14)

where r0 = 0 by definition.

Decreasing Serial Cost Sharing φDS is defined by cost shares

xDS
n−j+1 =

j∑

k=1

C(sk) − C(sk−1)
n + 1 − k

, j = 1, . . . , n, (2.15)

where s0 = 0 by definition.

Both rules are order-preserving, i.e.,

xIS
1 ≤ . . . ≤ xIS

n and xDS
1 ≤ . . . ≤ xDS

n .

Moreover, if C is linear xIS = xDS and clearly both rules satisfy Constant
Returns. Consequently, by Theorem 2.8, neither increasing nor decreasing
serial cost sharing satisfy Monotonicity. (In particular, note that φIS does
not satisfy Monotonicity on D̂.)

It is possible to establish some bounds (in qi) on the cost shares. If C
is convex then cost shares resulting from increasing serial cost sharing are
bounded from below by the stand-alone cost and from above by the unanimity
cost, i.e., C(qi) ≤ xIS

i ≤ C(nqi)/n. Cost shares resulting from decreasing
serial cost sharing are bounded from above by the unanimity cost whereas
there is no lower bound, i.e., xDS

i ≤ C(nqi)/n. If C is concave then xIS is
bounded from below by the unanimity cost and from above by the stand-
alone cost, i.e., C(nqi)/n ≤ xIS

i ≤ C(qi), whereas cost shares resulting from
decreasing serial cost sharing are bounded from below by the unanimity cost,
i.e., C(nqi)/n ≤ xDS

i . Hence, the increasing serial cost sharing rule φIS has
the following (universal) bounds on D;

1
n

C(qi) ≤ φIS(q, C) ≤ C(nqi),

whereas the decreasing serial rule fails both these (universal) bounds (note
that the average cost sharing rule φAC also fails both these universal bounds).

Thus, in general with homogeneous costs there is no guarantee that using
a serial rule we obtain individual rationality. This may not be surprising for
convex cost functions but even if the cost function C is concave some groups
of agents may end up paying more than their stand alone cost using the
decreasing serial rule. Hougaard and Thorlund-Petersen (2000) provide a set
of sufficient conditions for the decreasing serial rule to satisfy the stand alone
requirements for all coalitions in case of concave cost functions.



44 2 Simple Sharing Problems

Example 2.4. Assume that a group of n agents make a joint decision of
renting a copying machine at a fixed cost of β whereafter each copy taken
has a constant marginal cost of α. That is, for a given total demand Q the
(concave) cost function can be written as C(Q) = αQ + β with C(0) = 0.
Now, it could be argued that the cost share of agent i ought to be deter-
mined by xi = αqi + β/n since all agents are supposed to share the fixed
cost equally and pay the marginal cost of each copy demanded. This is, in
fact, also the result of using both increasing and decreasing serial cost shar-
ing if all demands are strictly positive. However, if some agent demands 0
then according to decreasing serial cost sharing he will still be forced to pay
his equal share of the fixed cost whereas using increasing serial cost sharing
agents with zero demand avoid payment. Moreover, since all agents pay an
equal share of the fixed cost, both rules works to the relative advantage of
agents with high demands in the sense that agent specific unit prices xi/qi

are decreasing in i. For comparison, note that average cost sharing results in
shares, xAC

i = αqi + qiβ/Q, where the fixed cost is shared in proportion to
demand (also ensuring that zero-demand avoid payment) and agent specific
unit prices are the same for all agents. �

It can be shown that if C is convex then the cost share of agent i using the
increasing serial rule φIS

i is non-decreasing in the demand of agent j, qj , for
any j �= i. If C is concave then the cost share of agent i using the increasing
serial rule φIS

i (resp. the decreasing serial rule φDS
i ) is non-increasing (resp.

non-decreasing) in the demand of agent j, qj , for any j �= i.
In general, both rules have decreasing (resp. increasing) agent specific unit

prices when the cost function is concave (resp. convex), i.e.,

xIS
1

q1
≥ . . . ≥ xIS

n

qn
and

xDS
1

q1
≥ . . . ≥ xDS

n

qn
,

for problems in Ď and

xIS
1

q1
≤ . . . ≤ xIS

n

qn
and

xDS
1

q1
≤ . . . ≤ xDS

n

qn
,

for problems in D̂. Thus, under concave cost functions (increasing returns
in production) agents with modest demands are penalized whereas under
convex cost functions (decreasing returns in production) agents with modest
demands are favored by both rules.

Example 2.5. Assume that agents can choose their demand strategically and
let costs be shared using Increasing Serial Cost Sharing φIS . For instance,
assume that two departments demand some service in quantity qi delivered
at quadratic costs C(q1 + q2) = (q1 + q2)2. Let both departments have linear
utility in demand qi and payment φIS

i , i.e., ui(qi, φi) = αiqi − φIS
i , where

α ∈ R++. That is, dept. 1 chooses its demand for service q1 by solving



2.3 Cost Sharing with Joint Cost Function 45

max
q1

α1q1 − 2q2
1 ,

yielding q∗1 = α1/4. Note, that the optimal demand level of dept. 1 is inde-
pendent of the demand of dept. 2 (since the cost share of dept. 1 does not
depend on the demand of dept. 2). Dept. 2 chooses its demand for service by
solving

max
q2

α2q2 −
[
(q1 + q2)2 − 2q2

1

]
,

and knowing that dept. 1 demands q∗1 = α1/4, we get that q∗2 = (α2−α1/2)/2.
Hence, in this case the cost sharing game induced by the increasing serial rule
has got a unique Nash equilibrium in demands

(q∗1 , q∗2) =
(

α1

4
,
2α2 − α1

4

)

,

and total cost is shared as

(φIS
1 , φIS

2 ) =
(

α2
1

8
,
2α2

2 − α2
1

8

)

.

As indicated by the example, it turns out that (when the cost function is
convex) the cost sharing game induced by φIS is dominance solvable and
yields a unique (Strong) Nash equilibrium for any (convex and monotonic)
preference profile, see Moulin and Shenker (1992). Recall, that in case of
convex cost functions we disregard φDS as it may result in negative cost
shares.

For comparison, assume that costs are shared using the Average Cost rule
φAC instead. In this case it turns out to be important how we construe the
process of announcing the demands (strategies). For instance, imagine that
the departments simultaneously choose their level of demand. Then the corre-
sponding induced (normal form) game has got at least one Nash equilibrium
(Watts 1996): In the current example we get the unique equilibrium

(q∗1 , q∗2) =
(

2α1 − α2

3
,
2α2 − α1

3

)

.

However, if the departments make a sequential choice of demands making
the induced cost sharing game dynamic (for example dept. 1 chooses first
and that choice is observed by dept. 2, which then chooses) the resulting
(subgame-perfect) Nash equilibrium becomes

(q∗1 , q∗2) =
(

3α1 − 2α2

4
,
2α2 − α1

2

)

.

For results on equilibrium existence in case of increasing returns (concave
cost functions), see, e.g., Moulin (1996) concerning the Increasing Serial rule
and De Frutos (1998) concerning Decreasing Serial rule.
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A recent survey of main results concerning strategic games in cost sharing
problems can be found in Koster (2009). �

Now, consider problems in D+ where the cost function equals a sum of a
convex and a concave function. Such functions often appear in managerial
economics where they are used to model that returns to scale may vary with
the size of production. Clearly, the increasing serial cost sharing rule can be
used directly on this domain. However, alternative rules may be defined using
a decomposition of the cost function into a convex and a concave component.

Let a decomposition rule be defined by a mapping Γ : D+ → D̂× Ď where
C = R + S for Γ(C) = (R,S) and normalized by the requirement that the
right derivative of R at Q = 0 equals zero. In particular, we shall focus on
the so-called complementary-slack (CS) decomposition which maximizes the
role of the concave component, see Thon and Thorlund-Petersen (1986). For-
mally, let ΓCS denote the complementary-slack (CS) decomposition where
lim supε→0 Δ2

εR(Q)Δ2
εS(Q) = 0 and R′(0) = 0 with Δ2

εC(Q) = ε−1(C ′

(Q + ε) − c′(Q)) for Q + ε ≥ 0, ε �= 0 and C ′ being the right derivative.
If C is twice continuously differentiable the conditions read R′′(Q)S′′(Q) = 0
and R′(0) = 0.
Example 2.6. In some cases there is a unique way to decompose a cost func-
tion into a convex and concave component. For example, consider the case
where a good is sold at a price of $1 per unit and a bundle of 10 goods
is offered at a price of 80 cents per unit implying that the cost function is
determined by

C(Q) =

⎧
⎨

⎩

Q if Q < 8
8 if 8 ≤ Q < 10
Q − 2 if 10 ≤ Q.

This cost function is uniquely decomposed into a sum of a convex and concave
function as C(Q) = R(Q) + S(Q) = max{0, Q − 10} + min{Q, 8}. How-
ever, if a 10 cent excise tax is added then total costs equal C(Q) + 0.1Q
with CS-decomposition max{0, Q − 10} + min{1.1Q, 0.1Q + 8} but this de-
composition is not unique as, for example, another decomposition could be
max{0, 1.1Q − 11} + min{1.1Q, 0.1Q + 8, 9}. �

Using the CS-decomposition rule to decompose the cost function into a
convex and a concave component, we are able to introduce a mixture of in-
creasing and decreasing serial cost sharing as suggested in Hougaard and
Thorlund-Petersen (2001). Here, it is argued that the spirit of increasing se-
rial cost sharing seems to fit best with convex cost functions (as agents with
smaller demands should not be penalized by the fact that agents with larger
demands cause the common cost to escalate) whereas the spirit of decreas-
ing serial cost sharing fits well with concave cost functions (as decreasing
marginal costs should penalize agents with small demands). Hence, the cost
share paid by agent i should be determined as a sum of i’s cost shares re-
lated to using φIS on the convex part and φDS on the concave part of the
CS-decomposition respectively:
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Mixed Serial Cost Sharing φMS is defined for problems in D+ where C
has CS-decomposition C = R + S as

φMS(q, C) = φIS(q,R) + φDS(q, S). (2.16)

Clearly, if C is convex (resp. concave) then mixed serial cost sharing co-
incides with increasing (resp. decreasing) serial cost sharing. Hence, for any
problem in D+, mixed serial cost sharing results in non-negative cost shares.

Example 2.7. Consider three agents (n = 3) with demands q = (1, 3, 5) and
cost function C(Q) = Q2 + 64

√
Q which is concave on [0, 4) and convex

on (4,∞). This cost function C can be decomposed into a convex function
R∗(Q) = Q2 and a concave function S∗(Q) = 64

√
Q. Using the principle

of mixing the serial cost sharing rules with respect to such a decomposition
results in the following cost shares:

Agent 1 Agent 2 Agent 3 Sum

R∗(Q) xIS
1 = 3 xIS

2 = 23 xIS
3 = 55 81

S∗(Q) xDS
1 = 44.6 xDS

2 = 63.8 xDS
3 = 82.6 192

Sum xIS
1 + xDS

1 = 47.6 xIS
2 + xDS

2 = 87.8 xIS
3 + xDS

3 = 137.6 273

Alternatively, consider the CS-decomposition C = R̃ + S̃ where

R̃(Q) =
{

0 if Q ≤ 4
Q2 + 64

√
Q − 24Q − 48 if Q > 4,

and,

S̃(Q) =
{

Q2 + 64
√

Q if Q ≤ 4
24Q + 48 if Q > 4.

Notice that for Q �= 4 we have R̃′′(Q)S̃′′(Q) = 0. Using the CS-
decomposition and the mixed serial cost sharing rule we obtain the following
cost shares:

Agent 1 Agent 2 Agent 3 Sum

R̃(Q) xIS
1 = 0 xIS

2 = 1.2 xIS
3 = 7.8 9

S̃(Q) xDS
1 = 40 xDS

2 = 88 xDS
3 = 136 264

Sum xIS
1 + xDS

1 = 40 xIS
2 + xDS

2 = 89.2 xIS
3 + xDS

3 = 143.8 273

Notice that there is a significant difference in the resulting cost shares
depending on the particular way that the cost function is decomposed. In par-
ticular, it appears that the cost shares resulting from mixed serial cost sharing
(and the CS-decomposition) are Lorenz-dominated by the cost shares related
a mixture of φIS and φDS but related to the alternative decomposition. In
fact, this is no coincidence as it will be demonstrated in Theorem 2.12. �
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2.3.2.4 Inequality Comparisons

Using the ordering of Lorenz-domination we can consider the relation be-
tween the serial rules and average cost sharing with respect to equality of
the resulting cost shares. Such an ordering naturally depends on the specific
domain of problems considered.

Proposition 2.4 (Hougaard and Thorlund-Petersen 2001). For
problems in D̂ (with convex cost functions) we have

φAC 
LD φIS 
LD φDS .

For problems in Ď (with concave cost functions) we have

φDS 
LD φIS 
LD φAC .

Finally, for problems in D+ (with sums of convex and concave cost functions)
we have

φMS 
LD φIS (φDS).

Proof (sketch). First we note that xP
i = ACqi where AC = C(Q)/Q. Hence

by increasing (resp. decreasing) agent specific unit prices of φIS and φDS on
D̂ (resp. Ď,) we get that

x
IS(DS)
1

xAC
1

≤ . . . ≤ x
IS(DS)
n

xAC
n

(
x

IS(DS)
1

xAC
1

≥ . . . ≥ x
IS(DS)
n

xAC
n

)

.

Since, in general we have that if u1/v1 ≤ . . . ≤ un/vn for v1 > 0 then
v 
LD u (see, e.g., Marshall and Olkin 1979) we obtain the desired result
with respect to the relation between the serial rules and average cost sharing.
The relation between φIS and φDS follows from Lemma 4 in Hougaard and
Thorlund-Petersen (2001). ��

In other words, Proposition 2.4 states that for problems with convex cost
functions the cost shares of average cost sharing are more equally distributed
than the cost shares of increasing serial cost sharing which are more equally
distributed than the cost shares of decreasing serial cost sharing. For problems
with concave cost functions the cost shares of decreasing serial cost sharing
are more equally distributed than the cost shares of increasing serial cost
sharing which are more equally distributed than the cost shares of average
cost sharing, and finally, for problems where the cost function is a sum of
convex and concave cost functions the cost shares of mixed serial cost sharing
are more equally distributed than the cost shares of both increasing and
decreasing serial cost sharing.
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2.3.2.5 Axiomatic Characterization

Characterizing cost sharing rules in general, the structural property of addi-
tivity has drawn much attention: if a cost function is a sum of two separate
cost functions then finding cost shares with respect to this aggregate function
is tantamount to adding up the cost shares with respect to each separate cost
function. In other words, cost shares should not depend on the way that the
costs are categorized. Formally:

• Additivity: Let C1 and C2 be two cost functions then φ(q, C1 + C2) =
φ(q, C1) + φ(q, C2).

Additivity is satisfied by increasing as well as decreasing serial cost sharing
(and the average cost rule) but not by mixed serial cost sharing. Now, it turns
out that Additivity together with Constant Returns and one further property
of limited consistency is sufficient to single out increasing serial cost sharing.
This limited consistency property (called Free Lunch) states that if the cost
of serving n replica of a given agent’s demand is zero then this agent i pays
zero and cost shares of the remaining agents, φ

N\i
−i , are found removing the

“zero-cost agent” and sharing the cost in the reduced problem (q−i, C̃) where
C̃(z) = C(z + qi) for agents in the set N \ i. Formally:

• Free-Lunch: If C(nqi) = 0 then φi(q, C) = 0 and

φ−i(q, C) = φ
N\i
−i (q−i, C̃).

Clearly, Free-Lunch is violated by both the average cost rule and decreasing
(and thereby also mixed) serial cost sharing since basically it states that if an
agent can satisfy his demand by the free goods available to the group then
he need not participate in the cost sharing exercise.

Theorem 2.9 (Moulin and Shenker 1994). A continuous cost sharing
rule φ on D satisfies Order-preservation, Constant Returns, Additivity and
Free-Lunch if and only if it is the Increasing Serial Cost Sharing Rule φIS.

It has already been noticed that Increasing Serial Cost Sharing satisfies
Order-preservation, Constant Returns, Additivity and Free-Lunch. To prove
the converse the reader is referred to the proof in Moulin and Shenker (1994).
On the restricted domain of convex cost functions D̂, Moulin and Shenker
(1994) note that φIS can be characterized by an axiom called Unanimity
(Upper) Bound (stating that the cost share of agent i cannot exceed i’s una-
nimity cost C(nqi)/n) together with Continuity, Additivity and Free Lunch.

Now, a natural mirror image of the above characterization of the increas-
ing serial rule can be provided in case of the decreasing serial cost sharing
rule φDS .

Consider cost functions of the type Δt(z) = min{z, t} where t ≥ 0. These
functions will be called plateau cost functions in the following, i.e., functions
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where total costs equal total demand z up to some threshold t from where
the total cost remains fixed.

In case of plateau cost functions, the agent with the highest demand (agent
n) should pay t/n if the total demand exceeds t in case all agents demanded
the same quantity as agent n. This seems reasonable considering that average
costs are decreasing and the group as a whole benefits from a large total
demand. Now, having settled the cost share of the agent with the highest
demand, this agent may now be removed from the set of agents and the cost
shares of the remaining agents can be specified by imposing the same cost
sharing rule on a reduced cost function (along the lines of the Free Lunch
axiom). To formally define this property of Plateau Consistency we shall
make use of the following definitions: For S ⊂ N , qS is the projection of q
on RS . Moreover, let α ≥ 0 be a demand and let β ∈ R be a cost share
and define Cα,β(z) = (C(z + α) − β)+ for z ≥ 0 with Cα,β(0) = 0, where for
z ∈ R, (z)+ = max{0, z}.
• Plateau Consistency: Let n ≥ 2 and C(z) = min{z, t} and nqn ≥ t. Then

φn(N,C, q) = t/n and φi(N,C, q) = φi(N\{n}, Cqn,t/n, qN\{n}) for i �= n.

It is easy to see that Plateau Consistency is violated by increasing se-
rial cost sharing: For example, let N = {1, 2}, C(z) = min{z, t} and
q = (0, t). Then according to the increasing serial rule φIS

1 ({1, 2}, C,
q) = 0 and φIS

2 ({1, 2}, C, q) = t. According to the decreasing serial rule
φDS

1 ({1, 2}, C, q) = φDS
2 ({1, 2}, C, q) = t/2 in line with Plateau Consistency.

Actually, the plateau cost functions are extreme examples of how the increas-
ing and decreasing serial rules differ on concave cost functions as specified in
Proposition 2.4.

Now, it turns out to be convenient to extend D to the domain of all non-
decreasing cost functions D̃ (note that C(0) = 0 is not required here) since
handling fixed costs becomes relevant.

Hence, we will introduce two additional axioms: (1) Fixed Cost, which
states that in a situation of a fixed cost all agents have to share this cost
equally, and (2) Zero Cost, which states that if it is free to provide n times
the demand of agent n (the agent with the highest demand) then no agent
pays. Formally:

• Fixed Cost: Let α > 0 and C(z) = α for z ≥ 0. Then, φi(N,C, q) = α/n,
for all i ∈ N .

• Zero Cost: If C(nqn) = 0 then φi(N,C, q) = 0, for all i ∈ N .

Note that Zero Cost is satisfied by increasing serial rule while Fixed
Cost obviously is not. Furthermore, it can be noted that Zero Cost together
with Additivity and Plateau Consistency implies (a weak form of) Constant
Returns.

Theorem 2.10 (Hougaard and Østerdal 2009). A continuous cost shar-
ing rule on D̃ satisfies Fixed Cost, Zero Cost, Additivity and Plateau Consis-
tency if and only if it is the Decreasing Serial Cost Sharing Rule φDS .
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Before proving Theorem 2.10, we make a useful observation (omitting the
straightforward proof). In case of plateau cost functions Δt, the decreasing
serial rule has a particularly simple structure: Agents i, for which sn+1−i

(i.e., the total demand in case all agents j for which j < i also demand qi)
exceeds the threshold t, all pay t/n, while agents with smaller demands pay
their share as if there was a common average cost, plus an equal share of the
residual cost. Formally:

Lemma 2.1. Let t > 0, and let (N,Δt, q) be a cost sharing problem. If
s1 < t, then φDS

j (N,Δt, q) = qj for j = 1, . . . , n. If s1 ≥ t, let i be the
smallest positive integer for which sn+1−i ≥ t. Then

φDS
j (N,Δt, q) =

t

n
, j = i, . . . , n,

and

φDS
j (N,Δt, q) = qj +

∑n
k=i qk − (n + 1 − i)t/n

i − 1
, j = 1, . . . , i − 1.

Proof of Theorem 2.10 (sketch). It is simple to demonstrate that φDS satisfies
the properties in question. Hence, consider the converse claim.

Using the definitions L(z) = z,Δt(z) = min{z, t} and Λt(z) = max
{0, z − t} then, since Zero Cost together with Additivity and Plateau Con-
sistency implies (a weak form of) Constant Returns,

φi(N,Δnqn , q) = φi(N,L, q) − φi(N,Λnqn , q) = qi − 0 = qi,

for all i.
Observe that Λt = L − Δt for all t. Let t ≥ nqn. By Zero Cost and

Additivity,

φi(N,Δt, q) = φi(N,Δnqn , q) + φi(N,Δt − Δnqn , q) = φi(N,Δnqn , q),

since Δt − Δnqn is non-decreasing and has value 0 at nqn. Thus, for t ≥
nqn = s1 we have φi(N,Δt, q) = qi, for all i, and consequently, φ(N,Δt, q) =
φDS(N,Δt, q) by Lemma 2.1. In the remainder of the proof we assume that
t < s1.

By Plateau Consistency we have φn(N,Δt, q) = t/n. Now, consider an
arbitrary i �= n, and suppose that φj(N,Δt, q) = φDS

j (N,Δt, q) for all j =
i + 1, ..., n. We will show that φi(N,Δt, q) = φDS

i (N,Δt, q). For this, we
consider two separate cases: (1) t−

∑n
j=i+1 qj ≥ 0, and (2) t−

∑n
j=i+1 qj < 0.
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Case (1). Repeated use of Fixed Cost, Additivity and Plateau Consistency
gives

φi(N,Δt, q) = φi

(
N\{i + 1, ..., n},Δt−

∑n
j=i+1 qj , qN\{i+1,...,n}

)

+
qn − t/n

n − 1
+

qn−1 − t−qn

n−1

n − 2
+ ... +

qi+1 −
t−

∑n
k=i+2 qk

i+1

i

= φi

(
N\{i + 1, ..., n},Δt−

∑n
j=i+1 qj , qN\{i+1,...,n}

)

+
∑n

k=i+1 qk − (n − i)t/n

i
.

If sn+1−i ≥ t, then by Plateau Consistency we get

φi(N\{i + 1, ..., n},Δt−
∑n

j=i+1 qj , qN\{i+1,...,n}) =
t −

∑n
k=i+1 qk

i
,

hence

φi(N,Δt, q) =

∑n
k=i+1 qk − (n − i)t/n

i
+

t −
∑n

k=i+1 qk

i

=
t

n
.

If sn+1−i < t we have

φi(N\{i + 1, ..., n},Δt−
∑n

j=i+1 qj , qN\{i+1,...,n}) = qi

and consequently

φi(N,Δt, q) = qi +

∑n
k=i+1 qk − (n − i)t/n

i
.

By Lemma 2.1, we conclude that φi(N,Δt, q) = φDS
i (N,Δt, q). ��

Case (2). By Lemma 2.1, we have φDS
j (N,Δt, q) = t

n for j = i + 1, ..., n.
By Plateau Consistency, φi(N,Δt, q) = t/n. Now, using Plateau Consistency
the residual cost function becomes fixed hence using Fixed Cost we get that
φj(N,Δt, q) = t

n for all j < i. Thus, φi(N,Δt, q) = φDS
i (N,Δt, q).

We hence conclude that φ(N,Δt, q) = φDS(N,Δt, q).
This may be now be generalized to the entire domain of non-decreasing

cost functions as demonstrated in Hougaard and Østerdal (2009). ��
On the restricted domain of concave costs functions Ď it can be shown

that φDS can be characterized by (continuity), Quasi-fixed Cost, Additivity,
Plateau Consistency and Unanimity (Lower) Bound (stating that the cost
share of any agent i cannot be smaller than the unanimity cost C(nqi)/n).
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Now, let νΓ;ρ,σ be a cost sharing rule on D+ using decomposition Γ and
additive sub-rules ρ on D̂ and σ on Ď. It turns out that mixed serial cost
sharing can be characterized as the only rule that coincides with increasing
and decreasing serial cost sharing on the respective domains D̂ and Ď, is
independent of cost levels below nq1 and above nqn, and additive with respect
to fixed costs. Formally:

• Extension: The cost sharing rule νΓ ;ρ,σ is identical to φIS on D̂ and φDS

on Ď.
• Independence of irrelevant cost levels: Let q be given. If two cost functions

C1, C2 ∈ D+ coincide on the interval [a, b] and a ≤ nq1 < nqn ≤ b, then
νΓ;ρ,σ(q, C1) = νΓ;ρ,σ(q, C2).

• Fixed-cost additivity: For any cost function C ∈ D+ and fixed-cost function
F ∈ D+, νΓ;ρ,σ(q, C + F ) = νΓ;ρ,σ(q, C) + νΓ;ρ,σ(q, F ).

Theorem 2.11 (Hougaard and Thorlund-Petersen 2001). A decom-
position based cost sharing rule νΓ;ρ,σ (with additive sub-rules ρ and σ) on
D+, satisfies Extension, Independence of irrelevant cost levels and Fixed-cost
additivity if and only if it is the Mixed Serial Cost Sharing Rule ϕMS.

Proof. It is easily verified that Mixed Serial Cost Sharing satisfies Extension,
Independence of irrelevant cost levels and Fixed-cost additivity. To prove the
converse: It suffices to consider a piecewise affine cost function C which is
determined by some subdivision 0 < Q1 < Q2 . . . of [0,∞). If C equals a
convex angle function Cα,β(Q) = max{0, αQ− β}, α, β > 0, then C only has
decomposition C = C+0. Thus, by Extension νΓ;ρ,σ(q, Cα,β) = φIS(q, Cα,β).
Since every piecewise affine convex cost function equals a finite sum of convex
angle functions on any bounded interval and by assumption the sub-rule ρ is
additive we get that ρ = φIS . Similarly, considering concave angle functions
we get σ = φDS .

Now, consider a cost function C decomposed by Γ and demand q confined
by the interval [a, b] in the sense that a ≤ nq1 < nqn ≤ b. First, if C is convex
on [a, b] then there exists a convex function C∗ and a fixed-cost function
F ∗ such that C∗ + F ∗ coincides with C on [a, b]. Hence, by Extension and
Fixed-cost additivity

νΓ;φIS ,φDS (q, C∗ + F ∗) = νΓ;φIS ,φDS (q, C∗) + φDS(q, F ∗),

and since νΓ;φIS ,φDS (q, C∗) = φIS(q,R + S − F ∗) we get that S must be
affine on [a, b]. Likewise we can show that if C is concave on [a, b] then R
must be affine on this interval. Consequently, the piecewise affine function is
decomposed according to the CS-decomposition. ��

Note, that even though φIS and φDS both are additive rules, mixed serial
cost sharing does not satisfy Additivity but only Fixed-cost Additivity.

Now, among all cost sharing rules νΓ;φIS ,φDS on D+ using decomposition
Γ and additive sub-rules φIS on D̂ and φDS on Ď, mixed serial cost sharing



54 2 Simple Sharing Problems

can be characterized as resulting in the most unequal allocation of costs. A
somewhat striking result since the CS-decomposition maximizes the concave
component and thereby intuitively maximizes the role of φDS which might
be expected to lead to more equally distributed cost shares. On the other
hand, it follows from Proposition 2.4 that using increasing serial cost sharing
on the entire domain of D+ results in more equal distributions than using
mixed serial cost sharing.

Theorem 2.12 (Hougaard and Thorlund-Petersen 2001). For any
decomposition Γ,

νΓ;φIS ,φDS 
LD φMS .

Proof. Let Γ(C) = R∗ +S∗ and ΓCS(C) = R+S then it must be shown that
for any k = 1, . . . , n

k∑

i=1

(φIS
i (q,R) + φDS

i (q, S)) ≤
k∑

i=1

(φIS
i (q,R∗) + φDS

i (q, S∗)).

Now, let G = R∗ − R = S − S∗ then
∑k

i=1 φDS
i (q,G) ≤

∑k
i=1 φIS

i (q,G) and
since it can be shown that G is an increasing convex function (see, e.g., Thon
and Thorlund-Petersen 1986) the theorem follows from φIS 
LD φDS on D̂
cf. Proposition 2.4. ��

2.3.2.6 Manipulation

In case of homogeneous cost functions the only non-manipulable cost sharing
rule is the average cost rule. Hence, all serial rules can be manipulated. In
particular, it can be demonstrated that with convex cost functions, i.e., for
problems in D̂, both increasing and decreasing serial cost sharing can be
manipulated by coalitions equalizing their demand (for a fixed number of
agents) and by agents splitting their demand (variable number of agents).

Example 2.8. Let N = {1, 2, 3} and q = (1, 2, 3). Then for the convex homo-
geneous cost function

C(Q) = max{0, Q − 4.5},

we get the following cost shares using increasing serial cost sharing,

xIS = (0, 0.25, 1.25).

Now, let agents 1 and 2 equalize their demand such that the new resulting
demand vector becomes q̂ = (1.5, 1.5, 3). In this case increasing serial cost
sharing results in cost shares

x̂IS = (0, 0, 1.5),
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making agents 1 and 2 better off as a group. Also, let agent 2 split his de-
mand into two new demands such that the new demand vector becomes
q̃ = (1, 1, 1, 3). In this case increasing serial cost sharing yield the following
cost shares

x̃IS = (0, 0, 0, 1.5),

making agent 2 better off. �
Using a similar type of example it can be demonstrated that with concave

cost functions, i.e., for problems in Ď, both increasing and decreasing serial
cost sharing can be manipulated by coalitions spreading their demand (for
a fixed number of agents) and by agents merging their demand (variable
number of agents).

2.3.3 Rules Based on the Incremental Principle

According to the serial principle above, demands are increasingly ordered
and incremental costs (given that ordering) are shared equally between the
relevant group of agents. Now, consider any ordering of demands: according to
the idea of the incremental principle agent i alone must cover the incremental
cost associated with satisfying i’s demand given the demand of all agents prior
to i in the ordering. In other words, agent i must pay the additional costs
connected with a joint operation involving agents with demands prior to i’s
in the ordering.

Formally, let π : Rn
+ → Rn

+ be an ordering of demands and let Sπ,i =
{j ∈ N |π(j) ≤ i} denote the set of indices of the first i demands given the
ordering π. Now, for a decomposable cost function C the incremental principle
results in cost shares,

xπ
i = C

(

max
j∈Sπ,i

{qj}
)

− C

(

max
j∈Sπ,i−1

{qj}
)

. (2.17)

Likewise, for a homogeneous cost function C the incremental principle results
in cost shares,

xπ
i = C

⎛

⎝
∑

j∈Sπ,i

qj

⎞

⎠− C

⎛

⎝
∑

j∈Sπ,i−1

qj

⎞

⎠ . (2.18)

To illustrate the principle, consider the simple case with three agents N =
{1, 2, 3} and increasingly ordered demands q1 ≤ q2 ≤ q3. For a decomposable
cost function the resulting cost shares according to the incremental principle
become,

x1 = C(q1), x2 = C(q2) − C(q1), x3 = C(q3) − C(q2).
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Likewise, the resulting cost shares for a homogeneous cost function become,

x1 = C(q1), x2 = C(q2 + q1) − C(q1), x3 = C(q3 + q2 + q1) − C(q2 + q1).

Clearly, the cost share of individual agents depends crucially on the or-
dering of demands and it is questionable whether such cost shares are fair
to all agents for a given ordering (in particular in case of decomposable cost
functions). In fact, note that there is a close connection between the incre-
mental principle and the priority rules of the rationing model discriminating
between agents.

However, since there are n agents there are n! different orderings of demand
vector q. Denote by Π = {πj |j = 1, . . . , n!} the set of all such orderings.
Consequently, there is a set of n! possible cost shares for every agent, which
are in accordance with the incremental principle. Just as the random priority
rule of the rationing model was found by taking the average of awards over all
the n! possible priorities (see Sect. 2.2.5) we may, in the present model, define
a cost sharing rule that takes the average of the incremental cost shares over
the set of n! different orderings of demand. Such a cost sharing rule will be
called the Shapley rule due to its obvious relation to the Shapley value of a
cooperative game, see, e.g., Shubik (1962).

• The Shapley Cost Sharing Rule φSh is defined by cost shares,

xSh
i =

1
n!

∑

π∈Π

xπ
i (2.19)

for all i = 1, . . . , n.

Further analysis of incremental cost shares as well as the Shapley cost
sharing rule is postponed to the next chapter where we consider cost allo-
cation as cooperative games, that is, for the case where the cost function is
defined for binary demands C : {0, 1}N → R+.

Remark 2.6. For decomposable cost functions C(Q) it can be noted that the
Shapley cost sharing rule as defined in (2.19) coincides with the serial rule as
defined in (2.14). �

Presently, an example will be used to compare the results of the different
allocation rules of Sect. 2.3.

Example 2.9. Recall the situation of Example 2.6 where three agents (n = 3)
with demands q = (1, 3, 5) are operating under a homogeneous cost function
C(Q) = Q2 + 64

√
Q. Since the total cost is C(9) = 273, the equal split

rule results in the cost shares xE = (91, 91, 91), but since agent 1’s stand-
alone cost of C(1) = 65 is smaller than xE

1 the restricted equal split rule
results in the allocation xRE = (65, 104, 104). Now, cost shares using average
cost sharing, increasing serial cost sharing and mixed serial cost sharing are
respectively,
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xAC = (30.33, 91, 151.67),
xIS = (39.95, 89.19, 143.86),
xMS = (40, 89.2, 143.8).

Clearly, the shares of mixed serial cost sharing are more equally distributed
than the shares of increasing serial cost sharing (a general property according
to Proposition 2.4) and in this case also more equally distributed than average
cost sharing.

Finally, using the Shapley cost sharing rule, cost shares can be found
by using the incremental principle with respect to all possible orderings of
demand and take the average. Since we get that,

xπ1
= (65, 79, 129),

xπ2
= (65, 80.23, 127.76),

xπ3
= (24.15, 119.85, 129),

xπ4
= (27.98, 119.85, 125.15),

xπ5
= (24.66, 80.23, 168.10),

xπ6
= (27.98, 76.91, 168.10),

the resulting cost shares of the Shapley rule become,

xSh = (39.13, 92.68, 141.19).

�

2.3.4 Comments

As mentioned in Moulin (2002) there is a clear formal relationship (a lin-
ear isomorphism) between order-preserving rationing rules and additive cost
sharing rules. For example, the proportional rationing rule corresponds to
the average cost rule, the random priority rule corresponds to the Shapley
cost sharing rule, etc.

In terms of application, average cost sharing is very appealing in its sim-
plicity and underlying notion of fairness (in proportion). Hence, it is often
applied in practical cases along with its egalitarian counter part, the se-
rial principle. For example, as mentioned in Sect. 1.3.2, Aadland and Kolpin
(1998) record that both average cost sharing and the serial principle are used
for sharing irrigation costs among farmers. Moreover, Herzog et al. (1997)
demonstrate that the serial principle can be applied sharing multicast cost in
computer networks according to the “Equal Link Split Downstream” method.
Both papers provide an axiomatic analysis of the specific methods applied.
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2.4 Summary

In this chapter we considered simple sharing problems where a group of
agents, characterized by a one-dimensional individual factor such as a claim
or a demand, should share a common cost (or value) which is either fixed or
varies with the level of the characteristic.

In case of sharing a fixed cost (or value) rationing problems were consid-
ered. Basically, allocation rules are build around two principles of fairness;
proportionality and equality. However, equality is not well-defined within the
model since a rationing problem can be construed either as sharing what is
left or as sharing what is lost. The Talmud allocation rule (building on the
notion of equality) can be seen as an answer to this problem since this rule
is constructed to be self-dual (like the proportional rule), i.e., independent of
whether focus is on gains or losses.

It was shown that allocation rules based on both types of fairness satisfied
fundamental principles like Equal Treatment of Equals and Consistency.
However, only the proportional allocation rule were non-manipulable.
Consequently, in cases where manipulation in the form of merging, split-
ting or reallocation of claims is a potential possibility, non-manipulability
is a strong argument in favor of choosing the proportional allocation rule.
Moreover, the proportional allocation also relates to the notion of equality
although in a more indirect sense: the proportional rule were actually the
only rule that preserved equality in the distribution of shares, that is, if
characteristics (e.g., claims) become more equally distributed so does the
allocated shares (and dually; losses).

In case of sharing a cost (or value) which varies with the level of char-
acteristics, homogeneous (and decomposable) cost sharing problems were
considered. Here, principles of proportionality and equality are still relevant
but knowledge of the entire cost function introduces the possibility of con-
structing new allocation principles such as the serial and the incremental
principle. In the present chapter we focussed on the serial principle while
further analysis of the incremental principle is postponed to later chapters.

In both cases, however, the principles are based on a pre-specified ordering
of agents characteristics (demand). Using the serial principle, the two natural
orderings of increasing and decreasing demand defines two distinct allocation
rules; increasing and decreasing serial cost sharing. As argued in the text
the increasing serial rule seems most relevant on the domain of convex cost
functions while the decreasing serial rules seems most relevant on the domain
of concave cost functions. Generalizing this observation to the domain of all
cost functions that can be decomposed into sums of convex and concave
functions we analyzed a non-additive allocation rule called mixed serial cost
sharing. On its relevant domain the cost shares resulting from mixed serial
cost sharing were more equally distributed than those of both increasing and
decreasing serial cost sharing.
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Contrary to the proportional rule (average cost sharing), rules based on
the serial principle may all be manipulated. Moreover, the proportional rule
further satisfies a natural requirement of increasing cost shares for all agents
when common costs are increasing – a property which is violated by the
serial (and incremental) rules. The serial (and incremental) rules, however,
all have the advantage that they are better in reflecting the underlying cost
structure than average cost sharing where only information about the cost of
total demand is utilized.
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Chapter 3

Cost Allocation as Cooperative Games

3.1 Introduction

There is a wide range of situations where a group of agents (broadly in-
terpreted as persons, departments, organizations or countries) benefit from
cooperative actions, but is left with the problem of sharing the related costs.
These situations range from everyday life problems such as people sharing a
cab to international agreements like the Kyoto protocol where industrialized
countries bargain over emission cuts. In everyday situations, like sharing a
cab, there are rarely time to make use of sophisticated allocation rules even
though the problem itself may be rather complex: typically the allocation
becomes more or less random and people often tend to use rules of thumb.
In situations like bargaining between countries over emission cuts, the fi-
nal outcome will typically reflect the countries bargaining power rather than
sophisticated considerations of fairness.

But even though there may be many obstacles to making fair allocations
in practice, it is nevertheless worth pursuing the issue of fairness: Joint ac-
tions are often economically rational and when it is efficient to cooperate it
becomes important to use cost sharing methods that encourage cooperative
actions and sustain such cooperation in the long run. Therefore, the alloca-
tion of costs must be accepted by all participants by ensuring a certain level
of fairness.

The following scenarios fit the framework:

1. “Agents” may, for example, refer to two municipalities that plan to build a
joint facility. Building two separate facilities is more costly than the joint
project so cooperation is economically efficient and should be encouraged.
Therefore, it remains to find a reasonable and fair way to share the costs
of the joint facility. Assuming that the municipalities are homogeneous ex-
cept from their estimated costs (e.g., characterized by an equal number of
citizens) it seems fair to require that no municipality shall pay more than
the costs of building their own facility (the stand-alone cost of each munic-
ipality). Otherwise cooperation is not likely to take place (with resulting
inefficiency). If the municipalities are not homogeneous, for example, if

J.L. Hougaard, An Introduction to Allocation Rules,
DOI 10.1007/978-3-642-01828-2 3, c© Springer-Verlag Berlin Heidelberg 2009
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they differ with respect to the number of citizens, and this ought to influ-
ence the allocation of costs, the problem can be reformulated in costs per
capita.

2. “Agents” may also refer to units of the same type: Airport landing fees
is a classical case in the cost sharing literature (see, e.g., Littlechild and
Thompson 1977). Assume that the costs of building and maintaining run-
ways shall be covered by airport landing fees. Typically, runways are used
by many different types of planes where larger planes require longer run-
ways. Obviously it is economically rational to build a runway that may
serve all types of planes instead of separate runways for each type. But this
raises the problem of sharing the costs between different types of aircrafts.

3. Finally, “agents” may refer to products or objectives as in the Tennessee
Valley Authority case mentioned in Sect. 1.3.1. During the 1930s the US
government launched a project building multi-purpose reservoirs to control
flooding, provide electric power and improve navigational and recreational
resources of the Tennessee River Basin. Once it is decided to undertake
such a project and “optimal” target levels for each purpose are estimated
it remains to share the total costs between the three main purposes. In
Ransmeier (1942) it is explicitly stated that the cost share of any purpose,
or combination of purposes, should not exceed the related stand-alone cost.

While it is rather clear that “agents”, in the sense of persons or orga-
nizations, require a fair cost allocation in order to encourage and sustain
cooperation in the long run it seems less obvious why fairness should play a
crucial role in cases where “agents” are interpreted as products or objectives
that cannot act strategically. But, it turns out that we may equivalently
express the stand-alone cost conditions for products as conditions stating
that no product (or group of products) must be subsidized by other products
(or group of products), see Sect. 3.3 for further details. Thus, (indirectly)
fairness in terms of the stand-alone cost conditions still play a crucial role
in relation to firms business strategies, since a proper allocation of the
costs of joint production (where no products are subsidized) prevents the
management from misjudging the profitability of individual products.

Finally, note that compared to simple sharing problems (in Chap. 2) we
may construe situations like (1)–(3) above as agents operating under a com-
mon cost function with binary demand qj ∈ {0, 1} for all j – that is, either
agents get served at some preassigned level or not.

3.2 The Model

Let N = {1, . . . , n} be a group of n agents (interpreted as persons, organiza-
tions, branches or departments of a corporation, objectives, products, etc.)
and let P(N) be the set of all coalitions (subsets) of N – there are 2n−1 such
coalitions disregarding the empty set ∅. Let c : P(N) → R be a discrete cost
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function where c(S) represents the least costs of serving coalition S ∈ P(N)
with c(∅) = 0 by definition. Now, a pair (N, c) constitutes a cost sharing
problem. Denote by Γ the set of all such cost sharing problems.

Given a cost allocation problem (N, c) we can associate a cost savings
problem (N, v) where v(S) =

∑
i∈S c(i) − c(S) for all S ⊂ N . Denote by

Γ̂ the set of all such cost savings problems (the cost savings problem is an
ordinary coalitional game with transferable utility – a so-called TU-game,
see, e.g., Peleg and Sudhölter 2003).

A cost sharing problem (N, c) ∈ Γ is said to be essential if the cooperative
solution is strictly preferred to the purely non-cooperative solution, i.e., if
c(N) <

∑
i∈N c(i). Likewise, a cost savings problem (N, v) is said to be

essential if v(N) >
∑

i∈N v(i).
Cost sharing (savings) problems are said to be monotonic if costs (savings)

increase when the size of the coalition increases, i.e., if, for all S′ ⊂ S ⊂ N
that c(S′) ≤ c(S) (or v(S′) ≤ v(S)).

One way to state that cooperation is beneficial is to require that the costs
connected with cooperation should always be smaller than adding up the
costs of separate activities. In general, a cost sharing problem (N, c) ∈ Γ is
said to be concave if, for all S, S′ ⊂ N that

c(S ∪ S′) + c(S ∩ S′) ≤ c(S) + c(S′). (3.1)

In particular, if the condition holds for all S, S′ where S ∩ S′ = ∅, (N, c) is
said to be subadditive. Likewise, we could state that cooperation is beneficial
by requiring that the cost savings connected with cooperation should always
be larger than adding up the savings of separate activities. In general, a cost
savings problem (N, v) ∈ Γ̂ is said to be convex if, for all S′, S ⊂ N that

v(S ∪ S′) + v(S ∩ S′) ≥ v(S) + v(S′). (3.2)

In particular, if the condition holds for all S, S′ where S ∩ S′ = ∅, (N, v) is
said to be superadditive. Note, that if (N, c) is subadditive (concave) if and
only if (N, v) is superadditive (convex).

A cost allocation rule is a function φ : Γ → Rn where

φ1(N, c) + . . . + φn(N, c) = c(N). (3.3)

Likewise, a savings allocation rule is a function φ̂ : Γ̂ → Rn where

φ̂1(N, v) + . . . + φ̂n(N, v) = v(N). (3.4)

A cost allocation is a vector x ∈ Rn where x1 + . . . + xn = c(N). Likewise, a
savings allocation is a vector y ∈ Rn where y1 + . . . + yn = v(N).



64 3 Cost Allocation as Cooperative Games

Finally, note that in practical applications of the model there may be
difficulties involved in establishing the entire cost structure. In the worst case
there will only be one realized cost, i.e., the total cost c(N) of the common
project (which has to be shared) and costs connected with all other coalitions
S ⊂ N , are estimated on a hypothetical basis as some kind of expected
costs in case S alone were to realize a common project. Since the number of
coalitions may be very large even for a relatively small number of agents (e.g.,
1,023 if n = 10) the task of estimating costs associated with all subsets may
be very demanding (and often impossible) in practice. Consequently, there
has been some doubt about the practical feasibility as well as relevance of the
entire approach particularly in the accounting literature, see, e.g., Mirghani
and Scapens (1995).

However, apart from issues of practical application the model plays an im-
portant role as an ideal approach to cost allocation in situations as specified
above. Moreover, in practice, costs may turn out to be conveniently struc-
tured facilitating application of the model as demonstrated by the cases in
Sect. 3.2.1.

3.2.1 Some Applications

Consider the following three applications of the model:

(1) Littlechild and Thompson (1977) model costs of aircraft movement (take-
off’s and landings) for a single airport (Birmingham) for a single time
period (1968–1969). The costs of an airport movement area has a partic-
ularly simple structure since the costs of building a runway is determined
by the largest aircraft for which it is designed and the costs of using the
runway is proportional to the number of movements for each type of air-
craft. Hence, let N be a set of movements by m aircraft types j = 1, . . . , m
and assume that the costs of building a runway designed for aircrafts of
type j is Cj where,

0 = C0 < C1 < . . . < Cm,

since larger aircrafts (in terms of a higher index j) require longer, and
thereby more expensive, runways.
Moreover, let Nj be the set of movements of aircrafts of type j, i.e.,

N =
m⋃

j=1

Nj .

Further, for a given subset of movements S ⊆ N, let

j(S) = max{j|S ∩ Nj �= ∅}
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be the type of aircraft among the subset S with maximal runway building
costs. Hence, the runway building costs of any subset of movements S ⊆
N can be found as ĉ(S) = Cj(S).
Now, let nj(S) = |S∩Nj | be the number of type j movements among the
set S ⊆ N where the direct runway user costs of a movement of type j
aircrafts is denoted zj . Hence, allocating costs of building and operating
a runway to specific movements (and thereby establish airport movement
fees) can be modeled as a cost allocation problem (N, c) where

c(S) =
∑

j∈S

zjnj(S) + Cj(S) (c(∅) = 0),

for all S ⊆ N . Hence, the entire cost structure is well established.
(2) Van den Nouweland et al. (1996) consider cost savings by rerouting

international telephone calls. Instead of using direct circuits from the
originating country to the destination country, costs may be saved by
rerouting the calls via the international network. Due to time differences
between Europe, America and Asia, circuits can be used more effectively
if high traffic loads between some parts of the world can be rerouted
via other parts of the world during their low traffic hours. Basically,
this involves the cooperation of three international carriers; a carrier in
the originating country, a transit carrier and a carrier in the destination
country. This situation can be modeled as a cost saving problem (N, v)
between a set N of international carriers with cost savings given by the
function v. Since the cost savings are realized in 3-agent coalitions (that
is between a carrier in the originating country, a transit carrier and a
carrier in the destination country) the cost savings of an arbitrary coali-
tion S ⊆ N of carriers can be approximated as the sum of cost savings
that can be obtained by any 3-agent subcoalition of S, i.e.,

v(S) =
∑

T⊆S:|T |=3

v(T ),

for all S ⊆ N . Note that the cost savings of a given 3-carrier coalition
v(T ) depends on the location of the carriers; costs are saved when the
traffic from a carrier in one time zone to a carrier in another time is
rerouted via a carrier in a third time zone while rerouting within the
same time zone does not lead to any significant savings. This particular
structure simplifies the subsequent savings allocation. Further consider-
ations of network allocation problems can be found in Chap. 3.

(3) Bjøndal et al. (2004) consider networks of Automated Teller Machines
(ATMs) where customers of one bank may use the ATMs of any other
bank in the network to provide services such as cash withdrawals, etc.
The related cost allocation problem is modeled in the following way:
Let N denote the set of banks in the network and let L denote the set
of possible locations (of the ATMs). Moreover, let nl

i be the number of
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transactions of bank i ∈ N in location l ∈ L and let nl(S) =
∑

i∈S nl
i

for S ⊂ N be the total number of transactions in location l belonging to
coalition S. Denote by Al the set of banks that have ATMs at location
l. Now, it is assumed that at any location l, customers of bank i will
use the ATMs of bank i if these are available. Further it is assumed that
transaction costs are the same for all banks: the transaction cost will be
α if a customer uses an ATM of his own bank and β if he uses that of
another bank where β > α. The costs of a transaction which does not
involve an ATM is assumed to be γ where γ > β (> α).
If the banks S ⊂ N form a network then for any location l ∈ L their
total amount of transaction costs is determined by

cl(S) = αnl(S ∩ Al) + βnl(S \ Al)

if S ∩ Al �= ∅ and γnl(S) otherwise. Consequently, we may define a
related cost savings problem (N, v) where, for each network (coalition)
S, the saving is determined as total stand-alone cost minus network costs
summed over all possible locations, i.e.,

v(S) =
∑

l∈L

(
∑

i∈S

cl(i) − cl(S)

)

= (γ − β)
∑

l∈L:S∩Al �=∅
nl(S \ Al),

for all S ⊆ N . Thus, also in this case, there is a well established cost and
saving structure.

3.3 The Stand-alone Cost Principle

Using the framework of Sect. 3.2 the stand-alone cost principle states that no
coalition of agents S can be allocated total costs exceeding their stand-alone
cost c(S). Formally:

• The stand-alone cost principle: Let x ∈ Rn be a cost allocation related to
the allocation problem (N, c), then for every coalition S ⊂ N ,

∑

i∈S

xi ≤ c(S).

In other words, no coalition of agents has incentive to block cost allocations
satisfying the stand-alone cost principle. Hence such allocations can be seen
as sustaining cooperation among the agents in N .

Dually, we may consider the marginal cost principle stating that no coali-
tion S must be subsidized by agents of the complement N \S, i.e., no coalition
can be allocated total costs lower than their marginal cost c(N) − c(N \ S).
Formally:
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• The marginal cost principle: Let x ∈ Rn be a cost allocation related to
allocation problem (N, c), then for every coalition S ⊂ N ,

∑

i∈S

xi ≥ c(N) − c(N \ S).

Note that the marginal cost principle is equivalent to the stand-alone cost
principle since,

∑

i∈S

xi ≥ c(N) − c(N \ S) =
∑

i∈N

xi − c(N \ S) ⇔
∑

i∈N\S

xi ≤ c(N \ S).

For a given cost allocation problem (N, c), denote by core(N, c), the set of
cost allocations satisfying the conditions of the stand-alone cost principle
(or equivalently, those of the marginal cost principle), i.e.,

core(N, c) = {x ∈ Rn|
∑

i∈N

xi = c(N),
∑

i∈S

xi ≤ c(S),∀S ⊂ N} =

{x ∈ Rn|
∑

i∈N

xi = c(N),
∑

i∈S

xi ≥ c(N) − c(N \ S),∀S ⊂ N}.

Note that the core is a compact and convex subset of Rn. Further, note
that if, for example “agents” are interpreted as objectives or products then
“agents” cannot choose strategically to block joint actions and are in some
sense forced to cooperate. As such, the stand-alone cost principle seems to
loose part of its relevance. However, due to the equivalence between the
stand-alone cost and the marginal cost principle, one can still argue for the
relevance of core allocations based on the no-subsidization argument behind
the marginal cost principle as mentioned in Sect. 3.1.

Obviously, there may be situations where some coalitions violate the stand-
alone cost principle, i.e., the core may be empty. If the core is empty, it
means that there is no possibility of sharing the total cost, which sustain
a joint action of all agents. For example, if there are no advantages from
cooperation. However, even if the cost allocation problem is essential (i.e.,
c(N) <

∑
i∈N c(i)) we, generally, cannot guarantee that the core is non-

empty as demonstrated by the following result.

Proposition 3.1. Let (N, c) be an essential cost allocation problem where c
has constant sum (i.e., c(S)+c(N\S) = c(N), ∀S ⊂ N), then core(N, c) = ∅.
Proof. Let (N, c) be essential and have constant sum. Assume that x ∈
core(N, c). Hence, for all i ∈ N we have that

∑

j∈N\i

xj ≤ c(N \ i).
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Since c has constant sum c(N \ i) = c(N) − c(i) and we get that

∑

j∈N\i

xj + c(i) ≤ c(N) =
∑

j∈N

xj ⇒ c(i) ≤ xi.

Hence,
∑

i∈N c(i) ≤
∑

i∈N xi = c(N) contradicting that the problem (N, c)
is essential. ��

Looking for necessary and sufficient conditions for non-empty core we need
some further definitions.

Given the set of agents N , a collection B = {S1, . . . , Sm} of non-empty
subsets of N is called balanced if there exists positive numbers δ1, . . . , δm such
that ∑

j:i∈Sj

δj = 1, for every i ∈ N.

The collection δ is called a system of balancing weights.
Note that every partition of N is a balanced collection and, consequently,

balanced collections can be viewed as generalized partitions. In case agents
are interpreted as persons, we may think of balancing weights as indicating
a percentage of the agents total time spend in given coalitions. The total
costs of all such balanced arrangements can be shown to play a crucial role
in relation to the existence of core elements.

Theorem 3.1 (Bondareva 1963; Shapley 1967). There exists at least
one cost allocation satisfying the stand-alone cost principle for cost allocation
problem (N, c) (i.e., core(N, c) �= ∅) if and only if, for all systems of balancing
weights δ, that ∑

S⊆B
δSc(S) ≥ c(N).

Proof. Consider the following linear program

max z =
∑

i∈N xi

s.t.
∑

i∈S xi ≤ c(S) ∀S ⊆ N, S �= ∅.
Clearly, any solution x to this problem is in the core of (N, c) and con-

versely, if x ∈ core(N, c) then
∑

i∈N xi = c(N). Thus, in optimum z∗ ≥ c(N).
By duality of linear programming the dual (linear) program is given by

min d =
∑

S⊆N δSc(S)
s.t.

∑
S:i∈S δS = 1, ∀i ∈ N, δS ≥ 0,∀S ⊆ N, S �= ∅.

As both programs are feasible, it follows from the duality theorem (see,
e.g., Taha 1989) that the optimal value is the same for both programs. Thus,
(N, c) has non-empty core if and only if

∑
S⊆N δSc(S) = d∗ = z∗ ≥ c(N). ��

Consequently, if a cost sharing problem (N, c) has non-empty core, we say
that (N, c) is balanced.
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Example 3.1. In case of 3-agent problems N = {1, 2, 3} all partitions of
{1, 2, 3} are balanced as well as the collection ({1, 2}, {1, 3}, {2, 3}). Balancing
weights are given as solutions to the equations,

δ1 + δ12 + δ13 = 1,

δ2 + δ12 + δ23 = 1,

δ3 + δ13 + δ23 = 1.

Hence, according to Theorem 3.1, there exists allocations satisfying the stand-
alone cost principle in case of 3-agent cost allocation problems if and only if,

c(1) + c(2, 3) ≥ c(1, 2, 3),
c(2) + c(1, 3) ≥ c(1, 2, 3),
c(3) + c(1, 2) ≥ c(1, 2, 3),
c(1) + c(2) + c(3) ≥ c(1, 2, 3),
0.5(c(1, 2) + c(1, 3) + c(2, 3)) ≥ c(1, 2, 3).

It appears that subadditivity of (N, c) is a necessary condition for non-
empty core since, in general, any partition of N is balanced. Moreover, note
that the last condition is satisfied if (N, c) is concave. �

Proposition 3.2 (Shapley 1971). Let (N, c) be a concave cost allocation
problem, then there exists at least one cost allocation satisfying the stand-
alone cost principle (i.e., core(N, c) �= ∅).

Proof. Let π be a given ordering of the elements in N (since N = {1, . . . , n}
there are n! such orderings). Moreover, let Sπ,k = {i ∈ N |π(i) ≤ k}, k =
0, . . . , n, be the k first elements of the ordering π. Thus, Sπ,0 = ∅ and Sπ,n =
N. Consider the incremental cost shares xπ

i = c(Sπ,π(i)) − c(Sπ,π(i)−1), ∀i ∈
N. We claim that xπ ∈ core(N, c), when (N, c) is concave.

Indeed, let T ⊂ N, and j be the first element of N \T given π. All elements
prior to j (given π) are consequently in T. Hence, T ∪ Sπ,π(j) = T ∪ j, and
T ∩ Sπ,π(j) = Sπ,π(j)−1. By concavity of (N, c),

c(T ) + c(Sπ,π(j)) ≥ c(T ∪ Sπ,π(j)) + c(T ∩ Sπ,π(j)) =

c(T ∪ j) + c(Sπ,π(j)−1).

Implying that,
xπ

j ≥ c(T ∪ j) − c(T ).

Since
xπ

j =
∑

h∈T∪j

xπ
h −

∑

h∈T

xπ
h,

we get that, ∑

h∈T

xπ
h − c(T ) ≤

∑

h∈T∪j

xπ
h − c(T ∪ j).
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Repeating this argument n − t − 1 times (where t = |T |) we get,

∑

h∈T

xπ
h − c(T ) ≤

∑

h∈N

xπ
h − c(N) = 0,

and since T was arbitrarily chosen, xπ ∈ core(N, c). ��

In fact, as shown by Shapley (1971), when the problem (N, c) is concave
the vertices of the core consist of the n! incremental cost allocations xπ and
conversely, (Ichiishi 1981) when all n! incremental cost allocations xπ are
contained in the core, then (N, c) is concave.

Remark 3.1. For interpretational reasons, it can be noted that concavity of
(N, c) is equivalent to decreasing marginal contribution to coalitional costs
for given agents i, i.e., c(S ∪ i) − c(S) ≥ c(S′ ∪ i) − c(S′) for all i ∈ N , all
S, S′ ⊂ N \ {i} and S ⊂ S′. To see this, consider coalitions S ∪ i and S′. By
concavity of (N, c), c(S∪i)+c(S′) ≥ c(S∪i∪S′)+c(S∪i∩S′) = c(S′∪i)+c(S),
since S ⊂ S′. Conversely, let S ⊂ S′, and let T = N \ S′ consist of agents
{i1, . . . , it}. Hence,

c(S ∪ i1) − c(S) ≥ c(S′ ∪ i1) − c(S′)

c(S ∪ {i1, i2}) − c(S ∪ i1) ≥ c(S′ ∪ {i1, i2}) − c(S′ ∪ i1)

...

c(S ∪ T ) − c(S ∪ T \ it) ≥ c(S′ ∪ T ) − c(S′ ∪ T \ it).

Adding these inequalities we have, for all R ⊂ T that

c(S ∪ R) − c(S) ≥ c(S′ ∪ R) − c(S′).

Consider arbitrary coalitions S̄ and S̄′, and let S = S̄ ∩ S̄′, S′ = S̄′ and
R = S̄ \ S̄′. Thus, c(S̄ ∩ S̄′ ∪ S̄ \ S̄′) − c(S̄ ∩ S̄′) ≥ c(S̄′ ∪ S̄ \ S̄′) − c(S̄′),
yielding c(S̄)− c(S̄ ∩ S̄′) ≥ c(S̄ ∪ S̄′)− c(S̄′), i.e., the conditions for concavity
of (N, c). �

Example 3.2. In the case of balanced cost allocation problems some core
allocations may involve a transfer of money from some agents to others,
i.e., core allocations may include negative cost shares even though c(S) ≥ 0
for all S ⊆ N . For example, consider the following simple 2-agent problem
(which is balanced): c(1) = 8, c(2) = 2 and c(1, 2) = 1. Clearly, in this case
there are strong positive externalities from cooperation. The core consists of
all allocations α(−1, 2) + (1 − α)(8,−7), α ∈ [0, 1]. Thus, for example, the
allocation x = (−1, 2) satisfies the stand-alone cost principle but in this case
agent 2 must cover all costs plus subsidize agent 1 with 1 unit in order to
sustain cooperation.
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In general, it is difficult to say whether such allocations are meaningful
or not. On the one hand, it seems unreasonable that some agents should
subsidize other agents in order to cooperate. Indeed, agent 2, of the above
example, could simply cover all costs connected with the joint action himself
and then let agent 1 free ride. Thus agent 1’s threat to block the cooperation
is an empty threat. In this sense it is difficult to argue that some agents
should pay more than the total costs of the joint project. On the other hand,
we cannot rule out the possibility of situations where some agents are willing
to pay other agents to join the common project in order to obtain substantial
savings. Therefore the relevance of core allocations with negative shares must
depend of the specific situation. �

Since all n! incremental cost shares xπ
i = c(Sπ,π(i))− c(Sπ,π(i)−1) span the

core when (N, c) is concave, we get that core(N, c) ⊂ Rn
+ if and only if c is

monotonic. Unfortunately it is not as straightforward to find necessary and
sufficient conditions for positive core elements in the general case of balanced
problems.

Note, that for balanced cost savings problems (N, v) where v(S) ≥ 0 for
all S ⊆ N, the core will only contain non-negative allocations.

Example 3.3. For certain classes of allocation problems, the core plays a par-
ticular role from a purely operational point of view. For example, in the
case of cost allocation in linear production: consider a production process
where two inputs (a1, a2) are transformed into three outputs (b1, b2, b3). The
technology matrix is given by,

A =

⎛

⎝
0.25 0.10
8 5
4 6

⎞

⎠ .

Input prices p are respectively $200 and $150 per unit.
Assume that three departments {1, 2, 3} use this type of produc-

tion process. Department {1} must produce at least output vector
b(1) = (9, 260, 200). Department {2} must produce at least output vec-
tor b(2) = (5, 120, 200), and finally, department {3} must produce at least
output vector b(3) = (14, 590, 400).

Hence, every department is faced with the problem of minimizing costs
given input prices and the output requirement. For department {1} this prob-
lem reads:

min 200a1 + 150a2

s.t.
0.25a1 + 0.10a2 ≥ 9

8a1 + 5a2 ≥ 260
4a1 + 6a2 ≥ 200

a1, a2 ≥ 0

.
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Optimal solution is (â1, â2) = (30.9, 12.7) yielding a total cost of $8,091.
For department {2} the problem reads:

min 200a1 + 150a2

s.t.
0.25a1 + 0.10a2 ≥ 5

8a1 + 5a2 ≥ 120
4a1 + 6a2 ≥ 200

a1, a2 ≥ 0

,

Optimal solution is (â1, â2) = (9.1, 27.3) with total costs $5,909.
Finally, for department {3} the problem reads:

min 200a1 + 150a2

s.t.
0.25a1 + 0.10a2 ≥ 14

8a1 + 5a2 ≥ 590
4a1 + 6a2 ≥ 400

a1, a2 ≥ 0

,

Optimal solution is (â1, â2) = (55, 30) with total costs $15,500.
The aggregate result of separate production is hence b(1) + b(2) + b(3) =

(28, 970, 800) at a total cost of $

8091 + 5909 + 15500 = 29500.

Now, all three departments could agree to produce the aggregate output
requirement (28, 970, 800) jointly, yielding the following joint problem:

min 200a1 + 150a2

s.t.
0.25a1 + 0.10a2 ≥ 28

8a1 + 5a2 ≥ 970
4a1 + 6a2 ≥ 800

a1, a2 ≥ 0

,

Optimal solution is (â1, â2) = (80, 80) with total costs $28,000, and conse-
quently the joint effort is less costly. In this way we can elicit a cost function
c and hence a cost allocation problem involving the three departments:

Department S Cost c(S)
{1} 8,091
{2} 5,909
{3} 15,500
{1, 2} 14,000
{1, 3} 22,500
{2, 3} 19,909
{1, 2, 3} 28,000
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It remains to allocate the total costs of joint production ($28,000) between
the three departments. Now, it is easy to demonstrate that the above alloca-
tion problem is balanced. Thus, the core is non-empty. Core restrictions are
given by x1 + x2 + x3 = 28000 and,

x1 = 8091,

5500 ≤ x2 ≤ 5909,

14000 ≤ x3 ≤ 15500.

A cost allocation satisfying the stand-alone cost principle can be found
using the shadow prices resulting from the dual LP-problem:

max 28y1 + 970y2 + 800y3

s.t.
0.25y1 + 8y2 + 4y3 ≤ 200
0.10y1 + 5y2 + 6y3 ≤ 150

y1, y2, y3 ≥ 0
,

with optimal solution (ŷ1, ŷ2, ŷ3) = (545.5, 0, 15.9).
Using these shadow prices we obtain the following cost allocation satisfying

the stand-alone cost principle,

x1 = 545.5 · 9 + 0 · 260 + 15.9 · 200 = 8091,

x2 = 545.5 · 5 + 0 · 120 + 15.9 · 200 = 5909,

x3 = 545.5 · 14 + 0 · 590 + 15.9 · 400 = 14000.

This turns out to be a general result. Let N be the set of departments and
let, for all coalitions S ⊆ N , the cost function be determined by

c(S) = min{p · a|Aa ≥ b(S) and a ≥ 0},

where b(S) =
∑

i∈S b(i). Let ŷ be the optimal solution to the dual problem
for coalition N , i.e., the solution to the problem

max{y · b(N)|Aty ≤ p and y ≥ 0}.

Then, we claim that the cost allocation xi = ŷ · b(i), for all i ∈ N, is a core
allocation of the problem (N, c). Indeed, by duality of linear programming

ŷ · b(N) = c(N) =
∑

i∈N

xi.

Moreover, since for each S ⊂ N, that the solution yS to the problem

max{y · b(S)|Aty ≤ p and y ≥ 0},
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satisfies c(S) = yS · b(S) ≥ y · b(S) for any y where Aty ≤ p, we have, in
particular, that

∑

i∈S

xi = ŷ · b(S) ≤ c(S), ∀S.

General results concerning LP-games and the core may, e.g., be found in
Curiel (1997). �

As demonstrated by the discussion and examples above the immediate im-
pression is that we should focus on relevant cost allocations within the core
(in case the core is non-empty). By the following example, however, we end
this section showing that there may be arguments in favor of allocations
which do not comply with the stand-alone cost principle.

Example 3.4. Consider the following cost allocation problem where N =
{1, 2, 3} and c is given by

c(∅) = 0, c(i) = 1, i = 1, 2, 3,
c(1, 2) = c(1, 3) = 1, c(2, 3) = 2,
c(1, 2, 3) = 2.

Combined use of the stand-alone cost principle and the marginal cost prin-
ciple results in the following restrictions on cost shares,

0 = c(1, 2, 3) − c(2, 3) ≤ x1 ≤ c(1) = 1,
1 = c(1, 2, 3) − c(1, 3) ≤ x2 ≤ c(2) = 1,
1 = c(1, 2, 3) − c(1, 2) ≤ x3 ≤ c(3) = 1.

Since x1 + x2 + x3 = c(1, 2, 3) = 2 we get that core(N, c) = (0, 1, 1).
If cost allocations have to comply with the stand-alone cost principle, then
the only possibility is the allocation (0, 1, 1). But notice that it is costless
for agent 2 and 3 to block cooperation with agent 1, while such an action
would be very costly to agent 1. Hence, it could be argued that agent 1 has
to pay a small share of the total cost in order to ensure that agent 2 and 3
will, in fact, cooperate. An allocation like (ε, 1 − ε/2, 1 − ε/2) would violate
the stand-alone cost principle for coalitions {1, 2} and {1, 3} but there is no
reason to expect that the extreme allocation (0, 1) would be the result of
“subproblems” c(i) = c(j) = c(ij) = 1, for i = 1 and j = 2, 3 – so maybe an
allocation like (1

3 , 5
6 , 5

6 ) would be reasonable? �

3.4 Four Allocation Rules

If the gains from cooperation are large enough there are many ways to
share the common costs which satisfy the stand-alone cost principle and the
challenge is rather to select one particular allocation. As examples of such
selections from the core we introduce the nucleolus and the Lorenz allocation
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in Sects. 3.4.1 and 3.4.2. In general, however, there are also good arguments
in favor of selections that potentially are in conflict with the stand-alone cost
principle. As examples of such selections we introduce the Shapley value and
τ -value in Sects. 3.4.3 and 3.4.4.

3.4.1 The Nucleolus

Consider a given allocation problem (N, c) and let x be a specific cost alloca-
tion (i.e., x1 + . . .+xn = c(N)). Now, given (N, c) and x let, for all coalitions
S ⊂ N,

eS(x) = c(S) −
∑

i∈S

xi (3.5)

be the gains of coalition S from a cooperative action among the agents in
N given the particular cost allocation x. Note that eS(x) ≥ 0, for all S, if
and only if x satisfies the stand-alone cost principle. Hence, given the cost
allocation x, coalition S is said to be better off than coalition T if S gains
more than T from cooperation among N , i.e., if eS(x) > eT (x).

One type of fairness requirement concerning a cost allocation x relates to
favoring the worst off part, given the allocation x. As e indicates the gain
from cooperation given x, we may require that the allocation x ought to
maximize the value of e for the worst off coalition S. This is basically the
idea behind the nucleolus introduced by Schmeidler (1969).

Formally, denote by e(x) ∈ R2n−2 the vector of gains given the allocation
x and let θ : R2n−2 → R2n−2 map vector elements in increasing order. Now,
the nucleolus of cost allocation problem (N, c), denoted by xNuc, is defined as
the allocation which lexicographically maximizes θ(e(x)), i.e., the nucleolus
is defined by the allocation rule,

φNuc(N, c) = {x ∈ I(N, c)|θ(e(x)) 
lex θ(e(y)), ∀y ∈ I(N, c)}, (3.6)

where I(N, c) = {x ∈ Rn|
∑

i∈N xi = c(N)} and 
lex is the lexicographic
ordering: x 
lex y if x1 > y1 or x1 = y1 and x2 > y2, etc.

For a given cost allocation problem (N, c), it can be shown that xNuc is
unique and that xNuc ∈ core(N, c) when (N, c) is balanced. Consequently
φNuc(N, c) is a core selection.

Remark 3.2. Computation of the Nucleolus can be done by solving a series
of LP-problems (see, e.g., Owen 1995): First solve

max ε
s.t.

eS(x) ≥ ε, S ⊂ N
x ∈ I(N, c).
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Let ε1 be the optimal solution and let A1 be the set of coalitions S for which
the coalitional gain is ε1 for all optimal solutions (x, ε1). If the optimal x is
unique it is the nucleolus. If there are multiple optimal solutions x, then solve
the following problem,

max ε
s.t.

eS(x) ≥ ε, S ⊂ N
eS(x) = ε1, ∀S ∈ A1

x ∈ I(N, c).

Let ε2 be optimal solution and let A2 be the set of coalitions S with coalitional
gain ε2 for all optimal solutions (x, ε2). As long as there are multiple optimal
solutions x, continue to solve the (k + 1)’th LP-problem defined by adding
to the k’th problem, the following restrictions,

eS(x) = εk ∀S ∈ Ak,

where
Ak = {S|eS(x) = εk for all optimal solutions (x, εk)}.

A unique allocation, i.e., the nucleolus, is obtained after solving at most n−1
such LP-problems. �

Example 3.5. Consider balanced 2-agent cost allocation problems. In this
case the situation is particularly simple because

e(x) = (c(1) − x1, c(2) − x2) = (c(1) − x1, c(2) − c(1, 2) + x1),

since x1 + x2 = c(1, 2). The nucleolus is hence determined by solving c(1) −
x1 = c(2) − c(1, 2) + x1, that is,

xNuc
1 =

c(1, 2) − c(2) + c(1)
2

= c(1) +
c(1, 2) − c(1) − c(2)

2
,

and similarly

xNuc
2 = c(2) +

c(1, 2) − c(1) − c(2)
2

.

Hence, in case of 2-agent problems, the nucleolus share the gain from coop-
eration equally between the two agents. Since the core is determined as all
allocations x(α) = α(c(1, 2) − c(2), c(2)) + (1 − α)(c(1), c(1, 2) − c(1)), for
α ∈ [0, 1], the nucleolus corresponds to x(0.5), i.e., the “mid-point” of the
core when the problem is balanced. �

The nucleolus may also be based on per capita gains

êS(x) =
1
|S|eS(x), (3.7)
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in which case it is denoted the per capita nucleolus. The per capita nucleolus
is also a core selection for balanced cost allocation problems.

Remark 3.3. Consider the n-agent rationing model (q, E) of Chap. 2 and de-
fine, in the present setting, the related allocation problem (N, v(q,E)) by

v(q,E)(S) = max{E −
∑

i∈N\S

qi, 0}, ∀ S ⊂ N.

That is, an allocation problem where the worth of each coalition of agents is
determined as the non-negative amount left over when all other agents have
satisfied their demands. Note that v(q,E) is a function expressing values which
is convex and hence the core of (N, v(q,E)) is non-empty. In Aumann and
Maschler (1985) it is shown that the Talmud rule of the rationing model
corresponds to the nucleolus of allocation problem (N, v(q,E)). �

3.4.2 The Lorenz Allocation

Fairness can also be interpreted as distributional equality in the sense of
Lorenz domination (see Sect. 2.2.2 in Chap. 2) and Lorenz maximization can
consequently be a criterion for selection over the core. Unfortunately the set of
Lorenz maxima, L(N, c) = {x ∈ core(N, c)|x 
LD y, ∀y ∈ core(N, c)}, over
the core of a balanced cost allocation problem need not be unique. Uniqueness
of L(N, c) can only be guaranteed for concave cost allocation problems, see,
e.g., Dutta and Ray (1989). As such, Lorenz maximization over the core will
only lead to a selection if (N, c) is concave.

Thus, consider the class of concave cost allocation problems (N, c). Then
the Lorenz-allocation rule φL is defined by cost shares xL = L(N, c).

Remark 3.4. Let (N, c) be a concave cost allocation problem. By Dutta and
Ray (1989) the following algorithm determines xL: Let g(S, c) = c(S)/|S| be
the average costs of coalition S:

(1) First, let c1 = c. Define S1 ⊂ N as the largest coalition with the smallest
average costs g(S1, c1). Let xL

i = g(S1, c1), for all i ∈ S1.
(k) Assume that S1, . . . , Sk−1 have been defined recursively where S1

∪ . . . ∪ Sk−1 �= N. Define a new cost allocation problem where
ck(S) = ck−1(Sk−1 ∪ S) − ck−1(Sk−1) and let Sk be the largest coalition
with the smallest average costs g(Sk, ck). Let xL

i = g(Sk, ck), for all
i ∈ Sk.

In m ≤ n such steps, {S1, . . . , Sm} will be a partition of N, and xL can be
demonstrated to be the unique Lorenz maximal allocation in the core. �
Example 3.5 (continued). For the class of 2-agent balanced cost allocation
problems, L(N, c) is unique and hence a core selection. Compared to the
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nucleolus which is the “mid-point” of the core, the Lorenz allocation is either
the equal split allocation (if this is in core) or that extreme point of the
core which is “closest” to the equal split allocation. Formally, for 2-agent
allocation problems,

xL
i =

{
min(c(i), c(ij)

2 ) if c(j) ≥ c(ij)
2

c(ij) − c(j) otherwise.

�

Clearly, if the equal split allocation satisfies the stand-alone cost principle
then this allocation is the Lorenz maximal core selection.

An important difference between the nucleolus and the Lorenz allocation
relates to the property of “independence of irrelevant core alternatives” stat-
ing that if x ∈ core(N, c) is selected for the allocation problem (N, c) then
this allocation should also be selected for any cost allocation problem (N, ĉ)
for which x ∈ core(N, ĉ) ⊆ core(N, c). Since, by definition, the Lorenz al-
location only depends on the core restrictions, φL satisfies independence of
irrelevant core alternatives, whereas the nucleolus relates to the entire set of
coalitional costs and thereby violates independence of irrelevant core alter-
natives as illustrated by the following example.

Example 3.6. Consider a 3-agent cost savings problem (N, v) defined by

v(1) = v(2) = v(3) = 0,
v(1, 2) = v(1, 3) = 1, v(2, 3) = 0,
v(1, 2, 3) = 2.

Clearly, this problem is balanced and the equal split allocation is in
the core. Therefore the Lorenz allocation is xL = (2

3 , 2
3 , 2

3 ). The nucleolus
is the allocation xNuc = (1, 1

2 , 1
2 ). Now, there is a rather large family of

cost allocation problems related to the cost savings problem above (v(S) =∑
i∈S c({i}) − c(S)). Take for example c and ĉ defined as

c(1) = c(2) = c(3) = 1,
c(1, 2) = c(1, 3) = 1, c(2, 3) = 2,
c(1, 2, 3) = 1.

and

ĉ(1) = 1.5 ĉ(2) = 1, ĉ(3) = 0.5,
ĉ(1, 2) = ĉ(2, 3) = 1.5, ĉ(1, 3) = 1,
ĉ(1, 2, 3) = 1.

Note that in both cases the equal split allocation is in the core implying
that the Lorenz allocation of both (N, c) and (N, ĉ) is xL = (1

3 , 1
3 , 1

3 ).
Contrary to this we see that the nucleolus of (N, c) is (0, 1

2 , 1
2 ) and of (N, ĉ)

is ( 1
2 , 1

2 , 0). Since both c and ĉ relate to the same savings problem it does not
seem to agree with a principle of fairness that in the one case agent 1 is treated



3.4 Four Allocation Rules 79

most favourable whereas in the other case agent 3 is treated most favourable.
It could be argued that if, by a principle of fairness, the allocation (0, 1

2 , 1
2 ) was

selected for the problem (N, c) then this allocation should also be selected
for the problem (N, ĉ) since it is still in the core and no coalition has an
objection against it. But, clearly the nucleolus does not respect independence
of irrelevant core alternatives. The Lorenz solution, on the other hand, does.

�

In the general case of balanced cost allocation problems, results and char-
acterizations concerning the set of Lorenz maxima over the core, L(N, c),
may be found in Hougaard et al. (2001).

Remark 3.3 (continued). Notice that if ϕ is an allocation rule with respect to
the rationing model (q, E) (and hence satisfies 0 ≤ xi ≤ qi for all i ∈ N) then
ϕ ∈ core(N, v(q,E)). Indeed, assume conversely that there exists a coalition
S such that

∑
i∈S xi < v(q,E)(S) = max{0, E −

∑
i∈N\S qi}. Since xi ≥ 0 for

all i ∈ N we must have that
∑

i∈S

xi < E −
∑

i∈N\S

qi ⇔
∑

i∈N\S

qi <
∑

i∈N\S

xi,

contradicting that qi ≥ xi for all i ∈ N .
Since, by Theorem 2.1, the Constrained Equal Gains rule, ϕCEG, is the

unique Lorenz maximizer among allocation rules of the rationing problem, it
is equivalent to the Lorenz allocation of the problem (N, v(q,E)). �

3.4.3 The Shapley Value

The costs associated with any coalition of agents S are given by c(S) and
consequently it is possible to determine the marginal costs of letting agent i
join an arbitrary coalition S, where i �∈ S, i.e., mi(S) = c(S∪i)−c(S). Clearly,
the marginal costs may vary with coalition S. For example, by Remark 3.1
it is known that mi(S) is non-increasing in S when (N, c) is concave.

Now, one way of allocating the total costs c(N) using these marginal costs
mi(S) is, for example, by taking a weighted average of mi over all coalitions
S ⊆ N \ i. As such, define the Shapley value φSh of a cost allocation problem
(N, c) by the cost shares,

xSh
i =

∑

S⊆N\i

s!(n − s − 1)!
n!

mi(S), for all i ∈ N, (3.8)

(where |S| = s and 0! = 1). Note, that this is equivalent to taking the average
of the incremental costs associated with agent i over all n! possible orderings π
of n agents (as done in case of simple sharing problems in Chap. 2, Sect. 2.3.3).
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Example 3.5 (continued). Consider again the class of 2-agent cost allocation
problems. Straightforward application of the definition yields, c

(xSh
1 , xSh

2 ) =
(

c(1, 2) − c(2) + c(1)
2

,
c(1, 2) − c(1) + c(2)

2

)

,

i.e., the gain from cooperation is shared equally between the two agents mak-
ing the Shapley value coincide with the nucleolus on the class of 2-agent
allocation problems.

Alternatively, there are 2! = 2 possible orderings of two agents, i.e., π1 =
1, 2 and π2 = 2, 1. For agent 1, incremental cost shares are hence given by:

xπ1

1 = c(1) − c(∅) = c(1)
xπ2

1 = c(1, 2) − c(2).

Clearly, xSh
1 = 0.5xπ1

1 +0.5xπ2

1 = 0.5(c(1, 2)−c(2)+c(1)). Likewise, xSh
2 =

0.5xπ1

2 + 0.5xπ2

2 = 0.5(c(1, 2) − c(1) + c(2)). �

Now, as it appears in Example 3.5, the Shapley value coincide with the
nucleolus on the class of 2-agent allocation problems but this does not gen-
eralize to n-agent problems. In fact, the Shapley value need not even be a
core selection for balanced problems, as demonstrated by the following simple
example.

Example 3.7. Consider a 3-agent cost allocation problem given by

c(1) = 2, c(2) = 1, c(3) = 3,
c(1, 2) = c(1, 3) = c(2, 3) = 3, c(1, 2, 3) = 4.

The problem is balanced (and hence the core is non-empty) but not concave
since, for instance, c(1, 2, 3) + c(3) = 7 > c(1, 3) + c(2, 3) = 6. The Shapley
value is xSh = (1.33, 0.83, 1.83), which violates the stand-alone cost principle
for coalition {1, 3} since xSh

1 + xSh
3 = 3.16 > c(1, 3) = 3. Note, however, that

it is questionable whether coalition {1, 3} would actually block cooperation,
since using the Shapley value to allocate costs in the projected problem in-
volving only agent 1 and 3 (c(1) = 2, c(3) = 3 and c(1, 3) = 3) results in
the cost allocation xSh

c|{1,3} = (1, 2). Thus, agent 3 is actually worse off by
“standing-alone” with agent 1 (paying 2) than in the fully cooperative case
(paying 1.83). Hence, the threat by agent 1 and 3 to block cooperation does
not seem credible as agent 3 will be worse off. �

In general, when (N, c) is concave, the vertices of the core consist of the
n! incremental cost allocations xπ, and since the Shapley value is the average
of the incremental cost allocations, concavity of (N, c) consequently ensures
that the Shapley value satisfies the stand-alone cost principle and becomes a
core selection.
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Remark 3.5. Hart and Mas-Colell (1989) provide an alternative interpreta-
tion of the Shapley value. For every allocation problem (N, c) let P (N, c) be
the single valued so-called potential of the problem where P (∅, c) = 0 and let
MP

i (N, c) = P (N, c) − P (N \ i, c) be the marginal contribution of agent i
in terms of potential. Now, requiring that

∑
i∈N MP

i (N, c) = c(N) uniquely
determines the potential of (N, c) as

P (N, c) =
∑

S⊆N

(s − 1)!(n − s)!
n!

c(S).

Indeed, since P (∅, c) = 0 we get that P (i, c) = c(i) and consequently that

P (ij, c) =
c(ij) + P (i, c) + P (j, c)

2
=

c(ij) + c(i) + c(j)
2

and further

P (ijk, c) =
c(ijk)

3
+

c(ij) + c(ik) + c(jk)
6

+
c(i) + c(j) + c(k)

3
,

etc. It is easily seen that the Shapley value is the marginal contribution in
terms of potential, i.e., φSh

i (N, c) = P (N, c) − P (N \ i, c) = MP
i (N, c). �

Remark 3.3 (continued). As already indicated the Shapley value of allocation
problem (N, v(q,E)) is equivalent to the so-called the random priority rule of
the rationing model (q, E), see Chap. 2, Sect. 2.2.5. �

Remark 3.6. Note that for concave cost allocation problems, the Lorenz al-
location rule, φL, Lorenz-dominates the both the nucleolus and the Shapley
value while these latter rules cannot be ranked using the partial Lorenz or-
dering, i.e.

φL �LD {φNuc, φSh}.

In other words, for some concave allocation problems the cost shares of the
nucleolus are more equally distributed than those of the Shapley value while
for others the cost shares of the Shapley value are more equally distributed
than those of the nucleolus. The Lorenz-allocation, on the other hand, is
always Lorenz-dominating all other allocations in the core. �

3.4.4 The τ -Value

For a given cost allocation problem, let Mi = c(N) − c(N\i) de-
note the marginal cost of agent i joining the complement N\i and let
M = (M1, . . . ,Mn) be the vector of such marginal costs for all n agents.
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Following the argument of the marginal cost principle (see Sect. 3.3), Mi can
be interpreted as a lower bound for agent i’s cost share.

For any coalition S ⊆ N , let g(S) = c(S) −
∑

i∈S Mi denote the cost gap
related to S, i.e., the difference between the stand-alone cost of S and the
total lower bound of cost shares. It can be argued that, if i ∈ S, then agent
i should never pay more than Mi + g(S) and, consequently, an upper bound
for i’s cost share can be found as Mi + wi where wi = minS:i∈S g(S).

Consider the class of cost allocation problems for which g(S) ≥ 0 for all
S ⊆ N and

∑
i∈N wi ≥ g(N). In particular, these conditions are satisfied

for balanced cost allocation problems. Now, following Tijs (1981), define the
τ -value of cost allocation problem (N, c) by the cost shares

xτ
i = Mi +

wi∑
i∈N wi

g(N), for all i ∈ N. (3.9)

That is, the τ -value of agent i is determined by agent i’s marginal cost plus
a share of the total cost gap g(N) which is proportional to the minimal cost
gap related to coalitions containing i.

Example 3.5 (continued). Consider 2-agent cost allocation problems. Follow-
ing the definitions above we get that

M1 = c(1, 2) − c(2),
M2 = c(1, 2) − c(1),
g({1}) = c(1) − c(1, 2) + c(2),
g({2}) = c(2) − c(1, 2) + c(1),
g({1, 2}) = c(2) + c(1) − c(1, 2),

implying that w1 = w2 = c(1)+ c(2)− c(1, 2). Note, that if c is essential then
g(S) ≥ 0 for S ⊆ {1, 2} and

∑
i∈N wi ≥ g(N). Consequently, the τ -value, φτ ,

is determined by cost shares

xτ
1 = c(1, 2) − c(2) +

c(1) + c(2) − c(1, 2)
2

=
1
2

(c(1) − c(2) + c(1, 2)) ,

xτ
2 = c(1, 2) − c(1) +

c(1) + c(2) − c(1, 2)
2

=
1
2

(c(2) − c(1) + c(1, 2)) .

Thus, on the class of 2-agent cost allocation problems the τ -value coincides
with the Shapley value and the nucleolus. Moreover, it can be shown that the
τ -value is a core selection for all balanced 3-agent cost allocation problems.

�

In the particular case of concave cost allocation problems, where (according
to Remark 3.1)

c(S ∪ i) − c(S) ≥ c(S′ ∪ i) − c(S′) for S ⊂ S′ ⊂ N \ i,
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we have that

c(S ∪ i) − c(S) ≥ Mi ⇔ g(S ∪ i) ≥ g(S)

and consequently wi = g(i) for all i ∈ N . Therefore

xτ
i = Mi +

g(i)
∑n

i=1 g(i)
g(N), (3.10)

which is also known as the Alternate-Cost-Avoided method used in the Ten-
nessee Valley project mentioned in Sects. 1.3.1 and 3.1 (3). See, e.g., Tijs and
Driessen (1986) for further details.

On the class of balanced cost allocation problems the τ -value need not sat-
isfy the stand-alone cost principle as demonstrated by the following example.

Example 3.8. Consider the following 5-agent cost allocation problem where,

c(i) = 10 for i ∈ {1, 2, 3, 4, 5},
c(1, 3) = c(1, 4) = c(1, 5) = c(2, 3) = c(2, 4) = c(2, 5) = 19,
c(3, 4) = c(3, 5) = c(4, 5) = 18,
c(1, 2) = 15,
c(3, 4, 5) = 20,
c(S) = c(S ∩ {1, 2}) + c(S ∩ {3, 4, 5}) for all S ⊆ N = {1, 2, 3, 4, 5} where
|S| ≥ 3.

(in particular; c(N) = 35). Note that wi = g(i) for all i ∈ N but the problem
is not concave since, for instance, c(2, 3) + c(3, 4, 5) < c(2, 3, 4, 5) + c(3). The
problem, however, is balanced and the core is hence non-empty. Determining
the τ -value of cost allocation problem (N, c) we note that M = (5, 5, 2, 2, 2)
and

w = (g(1), g(2), g(3), g(4), g(5)) = (5, 5, 8, 8, 8).

Hence,
∑5

i=1 wi = 34, and g(N) = 35 − 16 = 19 yielding

xτ = (7.794, 7.794, 6.470, 6.470, 6.470).

But xτ violates the stand-alone cost principle, e.g., for coalition {1, 2} since
xτ

1 +xτ
2 = 15.588 > 15 = c(1, 2). For comparison the Shapley value is given by

xSh = (7.45, 7.45, 6.70, 6.70, 6.70)

which also violates the stand-alone cost principle, e.g., for coalition {3, 4, 5}
since xSh

3 +xSh
4 +xSh

5 = 20.1 > 20 = c(3, 4, 5). Due to the particular structure
of c, there is a unique Lorenz maximizing allocation in the core given by

xL = (7.5, 7.5, 6.667, 6.667, 6.667).

�
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Even on the class of concave problems the τ -value may violate the stand-
alone cost principle as hinted by the fact that the τ -value coincides with the
Alternate-Cost-Avoided method on this class.

Remark 3.3 (continued). The τ -value of the cost allocation problem
(N, v(q,E)) is equivalent to the so-called adjusted proportional rule of the
rationing model (q, E), defined in Curiel et al. (1987). �

3.5 Monotonicity Vs. the Stand-alone Cost Principle

Typically, cooperative actions require repeated use of a given allocation rule
based on periodical reassessments of the costs involved. Qualitative evaluation
of particular cost allocation rules therefore also includes an analysis of how
such rules respond to changes in the costs. Loosely speaking, it seems that if
the costs change in a certain way the resulting cost allocation should change
in a parallel fashion. For example, assume that the corporate center of some
company searches for a cost allocation rule to share the joint costs related to
n branches. An important criterion for the selection of such a rule is that it
induces the right incentives among the branches once the rule is implemented.
Since the corporate center will be interested in cost reductions it is important
that the allocation rule ensures that no branch will have incentive to block a
cost reduction because its resulting cost share will increase as a consequence
of reducing costs. This can be expressed in two equivalent fashions: first,
assume that the costs of all coalitions containing branch i has been reduced
while the costs of all other coalitions remain fixed, then i cannot receive a
larger cost share. Formally:

• A cost allocation rule φ is coalitionally monotonic if, for all i ∈ N that,

[c(S) ≥ ĉ(S) for all S ⊇ i and c(T ) = ĉ(T ) otherwise]
⇒ φi(N, c) ≥ φi(N, ĉ).

Alternatively, if the costs are reduced for a given coalition (the costs of all
other coalitions kept fixed) then the resulting cost share of any member of
that coalition cannot increase. Formally, for a particular coalition S ⊂ N :

• A cost allocation rule φ is S-monotonic if, for all i ∈ S,

[c(S) ≥ ĉ(S) and c(T ) = ĉ(T ) for all T �= S] ⇒ φi(N, c) ≥ φi(N, ĉ).

We say that an allocation rule φ is coalitionally monotonic if φ is S-monoto-
nic for all coalitions S ⊆ N .

Broadly speaking, we may view the stand-alone cost principle as ensur-
ing that cooperation is not blocked by conflicting interests, as given by the
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participation constraints of all coalitions, while the property of coalitional
monotonicity relates to conflicting interests among members of a coalition
when the participation constraints vary. As it turns out, there is a trade-off
between these conditions, in the sense that, no allocation rule can satisfy
both the stand-alone cost principle and coalitional monotonicity on the class
of balanced cost allocation problems.

Theorem 3.2 (Young 1985). For n ≥ 4 no core allocation rule satisfies
coalitional monotonicity (i.e., S-monotonicity for all S ⊆ N).

Proof. Young proved the theorem for n ≥ 5 but this result is extended in
Housman and Clark (1998) to n ≥ 4 using the following proof for n = 4: By
contradiction, let φ be a core allocation rule which is coalitionally monotonic
on 4-agent problems. Consider the cost allocation problem c(1) = c(2) =
c(3) = c(4) = 10, c(1, 2) = c(3, 4) = 20, c(1, 3) = c(1, 4) = c(2, 3) = c(2, 4) =
19, c(1, 2, 3) = c(1, 2, 4) = c(1, 3, 4) = c(2, 3, 4) = 29 and c(1, 2, 3, 4) = 38.
In addition, define c1, c2, c3 and c4 by c except for c1(1, 3, 4) = c2(2, 3, 4) =
c3(1, 2, 3) = c4(1, 2, 4) = 28. Now, core(N, c1) = core(N, c2) = {(10, 10, 9, 9)}
and core(N, c3) = core(N, c4) = {(9, 9, 10, 10)}, and consequently, φ(N, c1) =
φ(N, c2) = (10, 10, 9, 9) and φ(N, c3) = φ(N, c4) = (9, 9, 10, 10).

Since c(1, 3, 4) = 29 > 28 = c1(1, 3, 4) and c(S) = c1(S) for S �= {1, 3, 4}
we have, by coalitional monotonicity, that φ1(N, c) ≥ φ1(N, c1) = 10. Like-
wise, we get φi(N, c) ≥ φi(N, ci) = 10 for i = 2, 3, 4, contradicting that
∑4

i=1 φi(N, c) = c(N) = 38. ��

Remark 3.7. As demonstrated in Housman and Clark (1998) there is an in-
finite class of core allocation rules that are coalitionally monotonic on the
class of 3-agent allocation problems. Moreover, note that N -monotonicity –
that is,

[c(N) ≥ ĉ(N) and c(T ) = ĉ(T ) for all T �= N ] ⇒ φi(N, c) ≥ φi(N, ĉ),

for all i ∈ N – is inherently different from S-monotonicity with respect to
any proper subcoalition. By increasing the costs related to coalition N a new
set of feasible cost allocations emerge whereas increasing the costs related to
any proper subcoalition reduces the set of core allocations. �

As a direct consequence of Theorem 3.2, we see that neither the nucleolus
nor the per capita nucleolus (which are core selections) can be coalitionally
monotonic on the class of balanced cost allocation problems. In fact, the
nucleolus is not even N -monotonic (but the per capita nucleolus is). The
Shapley value, on the other hand, is clearly coalitionally monotonic by the
way it is defined, but it is not a core selection on the class of balanced
problems. The τ -value is neither coalitionally nor N -monotonic.

Since coalitional monotonicity is a desirable property based on consider-
ation of fairness, as well as incentives, it once more indicates that there are
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good arguments in favor of allocations, which do not necessarily comply with
the stand-alone cost principle (as the Shapley value (1

3 , 5
6 , 5

6 ) in Example 3.4).
To find such compliance we need to restrict attention to subclasses of alloca-
tion problems.

On the subclass of concave cost allocation problems the Lorenz allocation
is a well defined core selection, which is coalitionally monotonic, see, e.g.,
Hougaard et al. (2005) for a more general result. Note also, that on this class
the Shapley value is another example of a core selection which is coalition-
ally monotonic. Again, the nucleolus fails to satisfy N -monotonicity (Hokari
2000).

Remark 3.8. In Hougaard and Østerdal (2006) the nature of S-monotonicity
is further examined for the particular case where some central planner (HQ) is
imagined to select a core allocation by maximizing a (strictly concave and dif-
ferentiable) objective function over the set of allocations satisfying the stand-
alone cost principle. In this case it is demonstrated that for suitably large
problems (|N | ≥ 4 and |S| ≥ 3) S-monotonicity is tantamount to a favoring
of coalition S in the sense that the selected cost allocation must minimize the
aggregate costs of coalition S, given the core constraints. It therefore follows
that coalitional monotonicity is impossible, since the central planner cannot
favor all coalitions simultaneously. It is furthermore shown that no choice of
objective function can ensure N -monotonicity, i.e., we cannot exclude situa-
tions where some agents have the incentive to block cost reductions related
to the entire group of agents. Since there are many N -monotonic allocation
methods and N -monotonicity is a desirable property, it highlights the “costs”
of insisting on maximizing a (strictly concave and differentiable) objective
function over the set of allocations satisfying the stand-alone cost principle. �

Another relevant monotonicity property of cost allocation rules concerns
variation in the population. For instance, imagine a situation where joint costs
are shared among a group of agents facing positive network externalities. In
this case, it is natural to require that the selected allocation rule should
support the inclusion of new members into the network, for example, by
requiring that no coalition of the original members should be worse off by an
enlargement and hence have an incentive to block it. Formally, consider N
as any non-empty finite subset of the set of natural numbers N and let c|S
be the restriction of c to S ⊂ N . Now:

• A cost allocation rule φ is population-monotonic if, for all S,N with S ⊂ N
that

φi(S, c|S) ≥ φi(N, c),

for all i ∈ S.

For the particular case of concave cost allocation problems it can be shown
that both the Shapley value and the Lorenz-allocation (as well as general-
izations hereof) are population monotonic, see, e.g., Sprumont (1990) and
Hougaard et al. (2005) respectively, while the nucleolus is not, see, e.g., Hokari
(2000). The τ -value also fails population monotonicity.
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3.6 Axiomatic Characterizations

There is a large literature characterizing the four allocation rules above by
various sets of axioms. In order to make these characterizations as comparable
as possible, we shall focus on distributional characteristics for 2-agent prob-
lems and the property of consistency (see also Sect. 2.2.3 for the consistency
property related to rationing models).

3.6.1 Consistency and Reduced Problems

Loosely speaking, consistency requires that reallocation of costs among a
subcoalition of agents should result in cost shares identical to those resulting
from the original allocation problem. In other words, for members of any
coalition T ⊂ N , cost shares should be the same regardless of whether we
apply some allocation rule φ on the original problem (N, c) or on a reduced
problem (T, cφ

T ) where members in the complement of T have been “bought
off”. Formally, consistency is defined as follows:

• Consistency: Let (T, cφ
T ) be a reduced problem and let φ be a cost alloca-

tion rule. Then,
φi(T, cφ

T ) = φi(N, c),

for every problem (N, c), every coalition T ⊂ N, and all i ∈ T.

Clearly, we have to be more precise in defining the exact form of the
reduced problem since members in N\T may be “bought off” in several
different ways. In particular, we shall focus on two standard forms, i.e., the
Davis–Maschler and the Hart–Mas-Colell reduced problems.

Consider a given cost allocation problem (N, c) and a specific cost alloca-
tion φ(N, c) = x. For any coalition T ⊂ N define the Davis–Maschler Reduced
Problem (T, cφ

T ) by

cφ
T (S) = min

S′⊆N\T
{c(S ∪ S′) −

∑

i∈S′

φi(N, c)}, (3.11)

for all S ⊂ T, and cφ
T (T ) = c(N) −

∑
i∈N\T φi(N, c).

The Davis–Maschler reduced problem (T, cφ
T ) may be interpreted as fol-

lows: the members of coalition T are going to share their related aggregate
costs

∑
i∈T xi, given allocation x, on the basis of an underlying cost structure

which is determined by all subcoalitions S of T being free to “buy out” mem-
bers of the complement of T (including the empty set) in the way which mini-
mize their own costs. For example if N = {1, 2, 3, 4, 5} and T = {1, 2, 3}, then
agent 1 is free to minimize {c(1), c(1, 4)−x4, c(1, 5)−x5, c(1, 4, 5)−x4 −x5}.
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Alternatively, consider a given cost allocation problem (N, c) and some cost
allocation rule φ. For any coalition T ⊂ N define the Hart–Mas-Colell Re-
duced Problem (T, cφ

T ) by

cφ
T (S) = c(S ∪ S′) −

∑

i∈S′

φi(S ∪ S′, c|S∪S′), (3.12)

for all S ⊆ T, where S′ = N \T and c|S∪S′ is the restriction of c to S∪S′ ⊆ N .
The Hart–Mas-Colell reduced problem (T, cφ

T ) may be interpreted as fol-
lows: the members of subcoalitions S of T must “buy out” all members of
the complement of T according to their aggregate cost share in the ap-
propriate restricted problem (S ∪ (N\T ), c|S∪(N\T )). For example if N =
{1, 2, 3, 4, 5} and T = {1, 2, 3}, then c(1) = c(1, 4, 5)−φ4({1, 4, 5}, c|{1,4,5})−
φ5({1, 4, 5}, c|{1,4,5}).

Hence, the Hart–Mas-Colell and the Davis–Maschler reduced problems
differ in two main aspects. First, the Hart–Mas-Collel form relates to a general
cost allocation rule φ used on restricted problems and not a specific cost
allocation φ(N, c) = x. Second, the members of S are not free to “buy out”
members of the complement of T such as to minimize their costs.

Which of the two reduced forms is most relevant depends on the par-
ticular context being modeled. For instance, Hart and Mas-Colell (1989)
mention that their reduced form seems reasonable in cases where a company
has branches in several countries (or states) and wants to perform country
specific cost studies knowing that the branches of the other countries are
“active”. Here, consistency requires that cost allocation among the branches
of the specific country should remain the same whether the accountants of
the corporate center consider the reduced allocation problem of the country
itself or the allocation problem related to the company’s global (or nation
wide) activities. Contrary to this consider the Davis–Maschler reduced form:
imagine a situation where a subgroup of agents wants to reallocate the result
of a given allocation between themselves. Here, consistency requires that the
allocation should remain the same although all coalitions of the subgroup are
free to buy out members of the complement as they prefer (i.e., by minimiz-
ing their costs). As such, the difference can be seen as relating to a difference
in planning level where the Hart–Mas-Colell form fits a neutral third party
evaluator while the Davis–Maschler form is more suitable for reallocation
among the involved agents themselves.

Remark 3.9. Note, that there are two additional reduced forms: The Moulin
reduced problem, where cφ

T (S) = c(S ∪ S′) −
∑

i∈S′ φi(N, c) with S′ =
N \ T, and the reduced problem, where cφ

T (S) = minS′⊆N\T {c(S ∪ S′) −
∑

i∈S′ φi(S∪ S′, c|S∪S′)}, for all S ⊂ T, and cφ
T (T ) = c(N)−

∑
i∈N\T φi(N, c).

None of the four allocation rules of Sect. 3.4 satisfies consistency with respect
to the Moulin reduced problem. Moreover, in Hart and Mas-Colell (1989)
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it is shown that no allocation rule, which shares the gain from cooperation
equally for all 2-agent allocation problems can be consistent with respect to
the last type of reduced game. �

3.6.2 Characterizing the Nucleolus

In case of 2-agent problems the nucleolus and the Shapley value coincide
and become the allocation that shares the gains from cooperation equally
among the two agents (see Example 3.5). We denote this the 2-agent standard
allocation:

• 2-agent standard allocation: Consider 2-agent cost allocation problems
({i, j}, c). Then

φi({i, j}, c) = c(i) +
1
2
(c(i, j) − c(i) − c(j))

for i �= j.

Together with consistency with respect to the Davis–Maschler reduced
form this property can be shown to characterize the nucleolus.

Theorem 3.3 (Sobolev 1975). A cost allocation rule φ satisfies the 2-
agent standard allocation and consistency with respect to the Davis–Maschler
reduced problem if and only if φ is the nucleolus.

Variations of the theorem, as well as related proofs, may be found in Peleg
and Sudhölter (2003).

Example 3.7 (continued). Recall the cost allocation problem in Example 3.7
where

c(1) = 2, c(2) = 1, c(3) = 3,
c(1, 2) = c(1, 3) = c(2, 3) = 3, c(1, 2, 3) = 4.

In this case, the nucleolus is found to be xNuc = (1.5, 1, 1.5), which coin-
cides with the Lorenz maximal allocation in the core. It is simple to confirm
that this allocation is consistent with respect to the Davis–Maschler reduced
problems. Consider for instance the reduced problem ({1, 2}, cx

{1,2}) where
cx
{1,2}(1, 2) = 2.5 and

cx
{1,2}(1) = min{c(1) = 2, c(1, 3) − xNuc

3 = 1.5} = 1.5
cx
{1,2}(2) = min{c(2) = 1, c(2, 3) − xNuc

3 = 1.5} = 1.

Thus, φNuc({1, 2}, cx
{1,2}) = (1.5, 1) = (xNuc

1 , xNuc
2 ). On the other

hand, consider the Hart–Mas-Colell reduced problem ({1, 3}, cNuc
{1,3}) where

cNuc
{1,3}(1, 3) = 3 and
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cNuc
{1,3}(1) = c(1, 2) − φNuc

2 ({1, 2}, c|1,2) = 3 − 1 = 2

cNuc
{1,3}(3) = c(2, 3) − φNuc

2 ({2, 3}, c|2,3) = 3 − 0.5 = 2.5.

Thus, φNuc({1, 3}, cNuc
{1,3}) = (1.25, 1.75) �= (xNuc

1 , xNuc
3 ). Consequently

the nucleolus is not consistent with respect to the Hart–Mas-Colell reduced
problem.

Finally, note that if we consider the related cost savings problem v(S) =∑
i∈S c(i) − c(S) we get

φNuc(N, v) = (0.5, 0, 1.5),

which differs from the Lorenz maximal allocation in the core xL = (1, 0, 1).
In general, φNuc

i (N, c) = c(i) − φNuc
i (N, v) for all i. �

3.6.3 Characterizing the Shapley Value

Since the Shapley value coincides with the nucleolus on 2-agent allocation
problems it cannot be consistent with respect to the Davis–Maschler reduced
problem (by Theorem 3.3). However, it is in fact consistent with respect to
the Hart–Mas-Colell reduced problem which turns out to be a characterizing
property.

Theorem 3.4 (Hart and Mas-Colell 1989). A cost allocation rule φ
satisfies the 2-agent standard allocation and consistency with respect to the
Hart–Mas-Colell reduced problem if and only if φ is the Shapley value.

Sketch of Proof. We show only that an allocation rule φ satisfying 2-agent
standard allocation and consistency with respect to the Hart–Mas-Colell re-
duced problem must be the Shapley value, following the argument in Hart
and Mas-Colell (1989).

We claim that there exists a potential P where P (∅, c) = 0 such that φi =
P (N, c)− P (N \ i, c) hence proving that φ is the Shapley value (see Remark
3.5 in Sect. 3.4.3). The claim follows easily by 2-agent standard allocation
for n ≤ 2 where P (i, c) = c(i) and P (ij, c) = 0.5(c(ij) + c(i) + c(j)). Hence
consider generalization to n ≥ 3 by induction: Assume that P is defined for
problems up to dimension n− 1 and consider a problem (N, c) with |N | = n.
By consistency φi(N, c)−φj(N, c) = φi(N \k, c|N\k)−φj(N \k, c|N\k). Since
φi = P (N, c) − P (N \ i, c) for all coalitions of size n − 1 we get that

φi(N \ k, c|N\k) − φj(N \ k, c|N\k) =
P (N \ {k, j}, c|N\k) − P (N \ {k, i}c|N\k) =
φi(N \ {k, j}, c|N\k) − φj(N \ {k, i}, c|N\k).

Now, by consistency

φi(N \ {k, j}, c|N\k) − φj(N \ {k, i}, c|N\k) = φi(N \ j, c) − φj(N \ i, c).
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Hence,

φi(N, c) − φj(N, c) = φi(N \ j, c) − φj(N \ i, c) =
P (N \ j, c) − P (N \ {i, j}, c) − [P (N \ i, c) − P (N \ {i, j}, c)] =
P (N \ j, c) − P (N \ i, c),

proving the case for n ≥ 3. ��
Remark 3.10. There are several other characterizations of the Shapley value,
for example, in Shapley (1953) relating to the additivity property stating that
an allocation rule is additive if φ(N, c1 + c2) = φ(N, c1) + φ(N, c2) (which
is not satisfied by the nucleolus) and in Young (1985) relating to a strong
monotonicity property stating that if c(S) − c(S \ i) ≥ ĉ(S) − ĉ(S \ i) for all
S ⊇ i then φi(N, c) ≥ φi(N, ĉ) (which is not satisfied by the nucleolus). �
Example 3.7 (continued). Recall that the Shapley value of the cost allocation
problem (N, c) where

c(1) = 2, c(2) = 1, c(3) = 3,
c(1, 2) = c(1, 3) = c(2, 3) = 3, c(1, 2, 3) = 4,

is given by xSh = (1.33, 0.83, 1.83), which violates the stand-alone cost prin-
ciple for coalition {1, 3}. Now, it is simple to confirm that this allocation is
consistent with respect to the Hart–Mas-Colell reduced problems. Consider
for instance the reduced problem ({1, 2}, cSh

{1,2}) where cSh
{1,2}(1, 2) = 2.17 and

cSh
{1,2}(1) = c(1, 3) − φSh

3 ({1, 3}, c|1,3) = 3 − 2 = 1
cSh
{1,2}(2) = c(2, 3) − φSh

3 ({2, 3}, c|2,3) = 3 − 2.5 = 0.5.

Clearly, φSh({1, 2}, cSh
{1,2}) = (1.33, 0.83) = (xSh

1 , xSh
2 ). On the other

hand, consider the Davis–Maschler reduced problem ({2, 3}, cx
{2,3}) where

cx
{2,3}(2, 3) = 2.66 and

cx
{2,3}(2) = min{c(2) = 1, c(1, 2) − xSh

1 = 1.66} = 1,

cx
{2,3}(3) = min{c(3) = 3, c(1, 3) − xSh

1 = 1.66} = 1.66.

Thus, φSh({2, 3}, cx
{2,3}) = (1, 1.66) �= (xSh

2 , xSh
3 ). Hence, the Shapley

value is not consistent with respect to Davis–Maschler reduced problems.
�

3.6.4 Characterizing the Lorenz Allocation

As demonstrated by Example 3.7 neither the nucleolus nor the Shapley value
were consistent with respect to both the Davis–Maschler and the Hart–
Mas-Colell reduced problems. However, it turns out that on the subclass of
concave allocation problems the Lorenz allocation is in fact consistent with
respect to both types of reduced problems. But according to Example 3.5 the
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Lorenz allocation does not satisfy the 2-agent standard allocation. Rather it
satisfies the following type of 2-agent allocation called 2-agent constrained
egalitarianism:

• 2-agent constrained egalitarianism: Consider 2-agent cost allocation prob-
lems ({i, j}, c). Then

φi({i, j}, c) =

{
min(c(i), c(ij)

2 ) if c(j) ≥ c(ij)
2

c(ij) − c(j) otherwise.

As mentioned in Example 3.5 an allocation satisfying 2-agent constrained
egalitarianism is identical to the equal split if this allocation is in the core.
Otherwise it is the core allocation which is “closest” to the equal split, i.e.,
the Lorenz maximizing allocation in the core.

Theorem 3.5 (Dutta 1990). A cost allocation rule φ satisfies 2-agent con-
straint egalitarianism and consistency with respect to the Davis–Maschler
reduced problem (as well as the Hart–Mas-Colell reduced problem) if and only
if φ is the Lorenz-allocation.

Remark 3.11. In Arin et al. (2003) it is shown that the Lorenz allocation is
the only continuous and anonymous allocation rule which satisfies indepen-
dence of irrelevant core alternatives (see Sect. 3.4.2). In Hougaard et al. (2001)
the Lorenz set L(N, c) is characterized on the general domain of balanced
problems using consistency.

3.6.5 Characterizing the τ -Value

In terms of characterizing properties the τ -value is not directly comparable
with the other allocation rules. By Example 3.5 in Sect. 3.4.4 the τ -value
satisfies 2-agent standard allocation but is not consistent with respect to
neither the Davis–Maschler nor the Hart–Mas-Colell reduced problems. Tijs
(1987) provides a characterization based on properties, which are somewhat
closely related to the τ -value itself.

3.7 Comments

Closing this chapter we shall briefly mention a couple of deviations from the
standard model above. First, the model above is static of nature. Dynamic
aspects, as for example when imposing various monotonicity properties, are
really just considered in terms of a repetition of the static framework. How-
ever, there may be (dynamic) allocation problems where prior allocations
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become relevant and the applied allocation rule hence becomes a function of
the history of allocations as well as of the present cost or value structure. For
example, fair allocation of scarce health care resources according to needs
among a group of persons or institutions may be influenced by the size of
prior allocations. Lehrer (2002), as the exception in the literature, considers
such a dynamic framework.

Second, uncertainty often characterize real-life situations that involve al-
location problems while the above model is deterministic. To the extent that
allocation can await the realization of actual costs this does not pose a prob-
lem. On the other hand, if costs are random variables C with probability
distribution functions FC(S)(t) = Prob{C(S) ≤ t} then a cooperative deci-
sion problem (under risk) is introduced since the stand-alone cost principle
is no longer straightforwardly defined. However, as focus is somehow moved
away from the issue of allocation in as far as it influences the decision of the
involved coalitions, we shall not go into further details but refer to the ex-
isting literature, which roughly speaking consists of two separate tracks: the
“chance constrained games” by Charnes and Granot (1973) involving prior
allocations and second step reallocation after realization of costs and the
“stochastic cooperative games” incorporating agents risk attitudes as, e.g.,
in Suijs (2000) and Timmer et al. (2003).

Finally, situations may occur where the allocation problem is restricted
in coalition structure either since the costs (or worth) of some coalitions are
unavailable or because the existence of some coalitions are excluded due to
geographical, social or other types of restrictions. There is a large literature
concerning such problems (games) with given coalition structures and related
allocation rules. Since some types of restricted coalition structures may con-
veniently be represented by networks we shall return to this issue in Chap. 3.

3.8 Summary

Since cooperative actions are often economically rational, rules for sharing
costs and benefits associated with these actions must encourage and sustain
the cooperation. In this context, the stand-alone cost principle is quite fun-
damental since it states that no agent, or group of agents, can be forced to
pay more than their stand-alone cost when the total cost of the cooperative
scheme is shared, and consequently has no incentive to block the coopera-
tive effort. Necessary and sufficient conditions for the existence of allocations
that satisfy the stand-alone cost principle were provided by the Bondareva–
Shapley theorem (Theorem 3.1).

When the gains from cooperation are large enough, many allocation rules
will satisfy the stand-alone cost principle. The nucleolus and the Lorenz
allocation (only defined on concave problems) are examples of such rules.
However, there are also (otherwise) desirable rules, such as the Shapley- and
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the τ -value, which may violate the stand-alone cost principle (unless there
are gains from cooperation related to all underlying coalition structures, i.e.,
the problem is concave).

Moreover, when changes are made in the cost structure, cost shares ought
to change in a similar way. For example, if costs are reduced for a given
group of agents, the cost share of every agent in the group ought to be
non-increasing. Otherwise some agents will have incentives to block a poten-
tial cost reduction. There are allocation rules that satisfy such monotonicity
requirements (e.g., the Shapley value), but unfortunately they are, in gen-
eral, incompatible with the stand-alone cost principle (unless the problem is
concave).

The potential conflict between monotonicity requirements and stand-alone
cost requirements can also be illustrated by the four allocation rules that were
singled out for further analysis: The nucleolus generally satisfies the stand-
alone cost requirements but violates the monotonicity requirements while the
opposite is true for the Shapley value. The τ -value generally satisfies neither
the monotonicity requirements nor the stand-alone cost requirements while
the Lorenz allocation satisfies both but only on the restricted domain of
concave problems (as do the Shapley value).

However, it can be argued that monotonicity in cost shares for all coalitions
is are rather strong requirement. Likewise, it seems questionable whether
the stand-alone requirements are reasonable in all situations. Thus, the ap-
parent conflict between the stand-alone cost principle and the monotonicity
requirements seems less serious than what appears at first sight. Moreover, as
mentioned, the stand-alone cost principle and the monotonicity requirements
can be reconciled for concave problems (e.g., using the Shapley value or the
Lorenz allocation).

The four rules mentioned above all relate to different aspects of fair-
ness: The nucleolus favors the worst off coalition, the Lorenz allocation is
egalitarian subject to the stand-alone cost requirements, the Shapley value
considers the average of all incremental costs associated with each agent and
the τ−value relates to both the marginal cost of each agent and the total cost
gap. Furthermore, it turns out that the nucleolus, the Lorenz allocation and
the Shapley value differ in the way they are consistent (relating to different
types of reduced problems) and treat 2-agent problems.
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Chapter 4

General Sharing Problems

4.1 Introduction

Generalizing the cost sharing scenario to cover a multiple goods situation,
the complexity of the cost allocation model increases significantly compared
to the one-good (or homogeneous) case treated in Chap. 2.

The first problem arises because there are at least two ways to construe
the situation that we intend to model:

• We may consider the scenario as one where n agents i = 1, . . . , n each
demand a basket of m different types of goods. That is, each agent i is
characterized by a demand vector qi = (qi

1, . . . , q
i
m). Total cost is deter-

mined by a cost function over the aggregate demand of all the agents for
each good, i.e., as C

(∑n
i=1 qi

1, . . . ,
∑n

i=1 qi
m

)
. Typically, we shall think of

the m goods as being measured in different units, but it may also be in-
terpreted as demand for the same (homogeneous) good, e.g., delivered at
m different locations or points in time.

• We may also choose to consider the situation as one where n agents each
demand a different (or “personal”) type of good such that the total demand
is a profile written as q = (q1, . . . , qn). Total cost is determined by a cost
function over the demand profile, i.e., as C(q1, . . . , qn). The immediate
interpretation of a “personal” good is that of a good which is different from
the other personal goods and hence makes interpersonal comparisons of
demand meaningless. But, as above, we could also interpret the situation
as involving demand for the same good, i.e., as the homogeneous case but
with an asymmetric cost function where the agents are held responsible
for these asymmetries.

Clearly, these are two distinct scenarios, which in principle require two
different models. However, notice that if a cost sharing rule relates to a fixed
unit price for each particular good then the choice of modeling framework
becomes indifferent. Indeed, let n = m, let j be the index of agents and let
i be the index of goods. Assume that the scenario of personalized goods is
chosen and that cost sharing rules are defined with respect to this model.

J.L. Hougaard, An Introduction to Allocation Rules,
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97



98 4 General Sharing Problems

For a given demand profile (q1, . . . , qn) and a given cost function C(q) we
obtain the cost allocation (x1, . . . , xn) where xi is the cost share associated
with good i. Now, referring to the scenario of baskets of goods, the demand
for each personal good qi can be seen as the aggregate demand of all the
agents for good i, i.e., as qi =

∑n
j=1 qj

i . Assuming that all agents pay the
same unit price for a given good independent of their size of demand we may
determine such unit prices for each good as pi = xi/qi based on the cost
allocation (x1, . . . , xn). These unit prices can then be used to assess the cost
share of agent j, xj , related to any basket of goods since xj =

∑n
i=1(xi/qi)q

j
i .

But, as we shall see in the following, many cost sharing rules do not relate to
fixed unit prices. Moreover, when discussing desirable properties of allocation
rules the normative appeal of such properties may be totally different in the
different scenarios as considered in Sect. 4.4.

The second problem arises because none of the cost sharing rules analysed
for simple sharing problems (Chap. 2) can be directly applied in the general-
ized scenarios: the proportional rule requires that the demand of each agent
can be compared to the total demand of the group, and while this works fine
when all agents demand the same type of good the ratios are not defined for
demands of multiple goods. Moreover, rules based on the incremental and se-
rial principles typically require that demands can be ordered according to the
size of demand and/or interpersonally compared. Again, this works fine when
all agents demand the same type of good, but is no longer well defined for
demands of multiple goods. The challenge is therefore to extend the rules of
Chap. 2 to the case of multiple goods and (unfortunately) there is no unique
way of doing this as it will become clear in the following.

As an alternative approach to extending the allocation rules from simple
sharing problems, we may transform the problem into one of binary de-
mands as in Chap. 3, simply by defining the cost allocation problem (N, c) by
N = {1, . . . , n} and

c(S) = C

(
∑

i∈S

qi
1, . . . ,

∑

i∈S

qi
m

)

,

for all S ⊆ N, in the case where agents demand baskets of goods, or as

c(S) = C({qi}i∈S , 0, . . . , 0),

for all S ⊆ N , in the case of personalized goods. Now, the rules analysed in
Chap. 3 can be applied and the cost share xj related to each agent j = 1, . . . , n
determined, for example using the Shapley value, here called the Shapley–
Shubik cost sharing rule (Sect. 4.3.2).

In order to emphasize the connection with the framework of Chap. 2, we
shall model the general sharing problem as the situation where n agents each
demand a different (or “personal”) good and costs are given by a (heteroge-
neous) cost function C : Rn

+ → R+.
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The following scenarios may be imagined:

1. In a given company the department of administrative services offer in-
service training programs to n other departments of the company. Each
department i demands a specific type of program in the quantity qi and the
total cost C(q1, . . . , qn) of running the training programs must be allocated
between the n departments. Note that cost allocation would be simple if
the cost function is additive (i.e., C(q1, . . . , qn) = c1(q1) + . . . + cn(qn)).
However, it is easy to imagine that the same teachers are used in different
courses and parts of a given training program may be common for two or
more departments, etc. – all aspects that creates joint costs.

2. One of the departments of the company is a production department where
n different types of products are being produced in different quantities qi

under joint production. The total costs of production is given by the cost
function C(q1, . . . , qn). In order to analyse the company’s strategic posi-
tion on the market the management need unit production costs pi of all
products and these can be found by taking the cost share related to prod-
uct i, xi, and adjust for differences in quantity, i.e., pi = xi/qi. Apart from
the literature on managerial economics and accounting, internal pricing of
products has been a major topic in the literature on optimal pricing and
regulation of multi-product natural monopolies such as electricity produc-
tion and telecommunication.

3. Although we stick to the context of cost allocation, the model has an
equally natural interpretation within output (or surplus) sharing problems:
Imagine, for example, n agents each delivering working effort qi in a joint
project where the output is modeled by a production function P : Rn

+ →
R+ and total output has to be shared according to effort. Since efforts
do not enter homogeneously in the production process we cannot use the
rules of Chap. 2 directly.

4.2 The Model

Let N = {1, . . . , n} be the set of agents as well as “personal” (heterogeneous)
goods. A demand profile (related to N) is a vector q ∈ Rn

+ where qi specifies
the demand of agent i for good i. For S ⊂ N , let qS be the projection of q
on RS .

For fixed N , costs (related to demand profiles) are modeled by a non-
decreasing1 cost function C : Rn

+ → R that satisfies C(0, . . . , 0) = 0. Let
C0 denote the set of such functions. In particular, let ∂iC(q) be the first order
derivative of C ∈ C0 at q with respect to the ith argument if it exists. Let C1

be the set of continuously differentiable functions in C0. Moreover, let C2 be

1 That is, q ≥∗ q′ implies that C(q) ≥ C(q′) where q ≥∗ q′ ⇔ qi ≥ q′i ∀i = 1, . . . , n.
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the set of all twice continuously differentiable functions in C0 with bounded
derivatives (i.e., there exists numbers a(C) and b(C) such that 0 < a(C) ≤
∂iC ≤ b(C) for all i ∈ N). In practice C may be estimated as shown in
Sect. 4.5.

Further, we say that the cost function C ⊂ C0 is submodular (supermodu-
lar) if C(q) + C(q′) ≥ (≤)C(q ∧ q′) + C(q ∨ q′), where (q ∧ q′)i = min{qi, q

′
i}

and (q ∨ q′)i = max{qi, q
′
i}. For C ∈ C2 submodularity (supermodularity) is

tantamount to ∂2C
∂qi∂qj

≤ (≥)0 for all i �= j.

For fixed N , let (q, C) be a (heterogeneous) cost sharing problem and
let φ be a cost sharing rule which specifies a unique vector of cost shares
x = (x1, . . . , xn) = φ(q, C) where the cost shares xi add up to the total cost
C(q).

For fixed N and some domain of cost functions, say Z ⊂ C0, let f be a
separable bijection from Rn

+ onto itself, i.e., a list (f1, . . . , fn) of n bijections
from R+ onto itself. For each cost function C ∈ Z, define Cf (t) = C(f(t))
for all t ∈ Rn

+. Now, f is an ordinal transformation if Cf ∈ Z. Moreover, two
problems (q, C) and (q′, C ′) are said to be ordinally equivalent if there exists
an ordinal transformation f such that C ′ = Cf and q = f(q′).

In particular, if fλ
i = λiqi for all i ∈ N and λi ∈ R+, two problems (q, C)

and (q′, C ′) are said to be scale equivalent if there exists a transformation fλ

such that C ′ = Cfλ

and q = fλ(q′).

4.3 Three Allocation Rules

As mentioned in the Introduction there are no obvious ways to extend aver-
age cost sharing and cost sharing rules based on the incremental and serial
principles to the case of multiple goods. Therefore the literature has primarily
focused on extensions satisfying certain desirable properties (as we shall see
in Sect. 4.4) and three such extensions are the Aumann–Shapley rule being an
extension of average cost sharing (the proportional rule), the Shapley–Shubik
rule being an extension of the Shapley-value (or random priority rule) and
the Friedman–Moulin rule being an extension of serial cost sharing.

4.3.1 The Aumann–Shapley Rule

The Aumann–Shapley rule (Aumann and Shapley 1974) was for long the
unanimous recommendation in the cost sharing literature and has been the
subject of numerous papers focussing on both theoretical and applied aspects.
While it can be seen as an extension of average cost sharing it is also closely
related to the notion of the Shapley value being its continuous (“non-atomic”)
generalization.



4.3 Three Allocation Rules 101

Consider cost functions C ∈ C1. Fixing N and q, the idea is to replace
the average cost in the homogeneous case (which is not well defined in the
multiple goods case since total demand is not an economically meaningful
term) with the average of i’s marginal costs on a path joining 0 and q by
raising coordinates in proportion to q. To be more precise:

• The Aumann–Shapley Rule φAS is defined by the cost shares,

xAS
i (q, C) =

∫ qi

0

∂iC

(
t

qi
q

)

dt = qi

∫ 1

0

∂iC(tq)dt for all i ∈ N. (4.1)

Note that
∑n

i=1 xAS
i (q, C) = C(q). In particular, pAS

i =
∫ 1

0
∂iC(tq)dt can

be seen as the unit cost of good i – also known as the Aumann–Shapley
price. Since “agent” i pays the same price for all units demanded, use of
the Aumann–Shapley rule makes the choice between the scenario of demand
for personal goods (as in the present model) and the scenario of demand
for a basket of goods, indifferent: the demand for good i (qi) in the present
model can simply be interpreted as the aggregate demand for good i among
m individual agents demanding baskets of n different goods and using the
Aumann–Shapley prices the cost share related to any basket of goods can be
determined.

Moreover, note that when all agents except for agent i demand zero, agent
i will cover all costs and consequently the Aumann–Shapley price coincides
with the average cost C(qi, 0, . . . , 0)/qi in the homogeneous case.

In order to emphasize that the Aumann–Shapley rule is closely related to
the Shapley value, we shall also define a discrete version of the Aumann–
Shapley rule: Let each agent i demand an integer quantity qi. For a given
set agents N = {1, . . . , n} and (integer) demand vector q, let N1, . . . , Nn be
pairwise disjoint sets such that |Ni| = qi for each i ∈ N , and let Nq = ∪i∈NNi.
Hence, we have constructed a new set of pseudo-agents – one for each good
demanded. Now, for each subset of pseudo-agents S ⊆ Nq, define the discrete
cost function Γq(S) = C(|S∩N1|, . . . , |S∩Nn|). The (discrete version of the)
Aumann–Shapley rule is then defined as

φAS
i (q, C) =

∑

j∈Ni

φSh
j (Nq,Γq) for all i ∈ N, (4.2)

where φSh(·, ·) is the Shapley value of the related cost sharing problem as
defined in (3.8) in Chap. 3. That is, the Aumann–Shapley cost share of each
agent i ∈ N can be found by adding up the Shapley values (with respect to
Γq) of all pseudo-agents derived from the demand of agent i.

Example 4.1. Consider the 2-agent case |N | = 2 and let costs be determined
by the (concave) cost function

C(q) = q2 + (q1 + q2)0.5.
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If, for instance, demand is given by q = (q1, q2) = (1, 2) the total cost is
C(1, 2) = 2 + 30.5 = 3.73. Using the Aumann–Shapley rule to allocate total
costs we observe that,

∂1C(q) = 0.5(q1 + q2)−0.5 and ∂2C(q) = 1 + 0.5(q1 + q2)−0.5.

Hence,

xAS
1 ((1, 2), C) =

∫ 1

0

0.5(3t)−0.5dt = [3−0.5t0.5]10 = 3−0.5 = 0.58

and

xAS
2 ((1, 2), C) = 2

∫ 1

0

(1 + 0.5(3t)−0.5)dt = 2[t + 3−0.5t0.5]10 = 2(1 + 3−0.5) = 3.15,

with corresponding unit costs (Aumann–Shapley prices) of 0.58 and 1.58
respectively.

Now, consider instead the cost function Ĉ(q) = q2
1 + (q1 + q2)0.5 (which

is neither concave nor convex). For q = (1, 2) we get xAS
1 ((1, 2), Ĉ) = 1.58

and xAS
2 ((1, 2), Ĉ) = 1.15. Thus, contrary to average cost sharing in the

homogeneous case, the Aumann–Shapley rule is not order-preserving.
Finally, consider the discrete version of the Aumann–Shapley rule: Given

N = {1, 2}, C(q) = q2 + (q1 + q2)0.5 and q = (1, 2) we get two sets N1 = {i1}
and N2 = {i2, i3} such that Nq = {i1, i2, i3}. Hence, the sharing problem
(Nq, Γq) is given by

Γq(i1) = C(1, 0) = 1,
Γq(i2) = Γq(i3) = C(0, 1) = 2,
Γq(i1, i2) = Γq(i1, i3) = C(1, 1) = 1 + 20.5,
Γq(i2, i3) = C(0, 2) = 2 + 20.5

Γq(i1, i2, i3) = C(1, 2) = 2 + 30.5.

Now, the Shapley value of (Nq,Γq) is given by (xSh
i1

, xSh
i2

, xSh
i3

) = (3−0.5, 1 +
3−0.5, 1+3−0.5) and consequently we get the resulting Aumann–Shapley cost
shares xAS

1 = xSh
i1

= 0.58 and xAS
2 = xSh

i2
+ xSh

i3
= 3.15. Note that we

could have labeled the demands differently but anonymity of Shapley value
(see, e.g., Peleg and Sudhölter 2003) guarantees that all possible choices are
equivalent. �

Example 4.2. The case of internal telephone billing rates at Cornell Uni-
versity by Billera et al. (1978) is a early example of an application of
Aumann–Shapley pricing. Loosely speaking, Cornell buy telephone services
in bulks at reduced prices and need to allocate those costs among the users.

Now, telephone calls are not homogeneous: prices depend on the time
of day (most expensive at peak hours), the destination and whether it is a
weekend or workday call: that is, there are n = 24×k×2 = 48k different types
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of calls when there are k different destinations. Given any (monthly) demand
q = (q1, . . . , qn) for the n different call types, the lowest costs connected with
q can be determined, C(q), as well as the associated Aumann–Shapley prices
for all call types. �

Remark 4.1. As mentioned in the Introduction the cost allocation problem
can equivalently be construed as a problem of internal pricing (for example
in natural monopolies). Hence, it is natural to compare the Aumann–Shapley
prices with prices that are consistent with economic efficiency, i.e., the
marginal cost prices, pMC

i = ∂iC(q) for all i.
If the cost function is homogeneous of degree k (i.e., C(tq) = tkC(q), t ∈

[0, 1]) the connection between Aumann–Shapley pricing and marginal cost
pricing is clear. In particular,

∂iC(tq) =
C(tq + tΔqi) − C(tq)

tΔqi
=

tkC(q + Δqi) − tkC(q)
tΔqi

=

tk−1 C(q + Δqi) − C(q)
Δqi

= tk−1∂iC(q),

and consequently

pAS
i = ∂iC(q)

∫ 1

0

tk−1dt = pMC
i

1
k

.

Hence, if k < 1 – in the one-dimensional case corresponding to C being
concave – then pMC

i < pAS
i for all i and the use of marginal cost pricing will

result in a budget deficit (since use of the Aumann–Shapley prices results
in budget balance). If k = 1 – in the one-dimensional case corresponding to
C being linear – then marginal cost pricing coincides with Aumann–Shapley
pricing. Finally, if k > 1 – in the one-dimensional case corresponding to C
being convex – then pMC

i > pAS
i for all i resulting in a budget surplus if

marginal cost prices are used. �

As demonstrated by the example above, marginal cost prices cannot be
used directly to allocate costs since they do not necessarily result in bud-
get balance. However, budget balance can be ensured using various adjusted
versions of marginal cost pricing, as for example

xPMC
i =

qip
MC
i∑n

j=1 qjpMC
j

C(q), for all i ∈ N, (4.3)

where the residual is shared in proportion to marginal cost or

xEMC
i = qip

MC
i +

1
n

⎛

⎝C(q) −
n∑

j=1

qjp
MC
j

⎞

⎠ , for all i ∈ N, (4.4)
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where the residual is shared equally. Both these rules are extensions of average
cost sharing and thereby alternatives to the Aumann–Shapley rule.

4.3.2 The Shapley–Shubik Rule

To extend the Shapley value (of Chap. 3 and/or the Shapley cost shar-
ing rule of Chap. 2) to the model with demand for “personal” goods is
straightforward (Shubik 1962). The same formulas as in (3.8), in Chap. 3,
can be used replacing c(S) with C({qi}i∈S , 0, . . . , 0) for all S ⊆ N . Let
mi(S) = C({qj}j∈S∪i, 0, . . . , 0) − C({qj}j∈S , 0, . . . , 0) and define:

• The Shapley–Shubik Rule φSS by the cost shares,

xSS
i =

∑

S⊆N\i

s!(n − s − 1)!
n!

mi(S), (4.5)

for all i ∈ N (where |S| = s and 0! = 1).

Note that
∑n

i=1 xSS
i (q, C) = C(q). Moreover, considering a given ordering

π of demands, cost sharing according to the incremental principle can be
obtained as,

xπ
i = C(qπ1 , . . . , qπi

, 0, . . . , 0) − C(qπ1 , . . . , qπi−1 , 0, . . . , 0)

for all i ∈ N . The Shapley–Shubik rule may also be defined as the average of
xπ over all n! orderings (as in 2.19 in Chap. 2).

Example 4.1 (continued). Recall the cost function C(q) = q2 + (q1 + q2)0.5

of Example 4.1. With total demand q = (1, 2) we get the allocation problem
(N, c) where N = {1, 2} and c(1) = 1, c(2) = 3.42 and c(1, 2) = 3.73.
Using the Shapley–Shubik rule therefore results in cost shares xSS

1 = 0.66
and xSS

2 = 3.07 – that is, cost shares are more equally distributed than using
the Aumann–Shapley rule in this case (where xAS

1 = 0.58 and xAS
2 = 3.15).

Now, consider instead the cost function Ĉ(q) = q2
1 + (q1 + q2)0.5. For

q = (1, 2) we get xSS
1 ((1, 2), Ĉ) = 1.66 and xSS

2 ((1, 2), Ĉ) = 1.07. Thus,
contrary to the Shapley value in the homogeneous case, the Shapley–Shubik
rule is not order-preserving. Moreover, note that in this case the cost shares
are more spread than using the Aumann–Shapley rule (where xAS

1 = 1.58
and xAS

2 = 1.15). �

Remark 4.2. As mentioned in the Introduction any of the allocation rules
examined in Chap. 3 can be applied replacing c(S) with C({qi}i∈S , 0, . . . , 0)
for all S ⊆ N, as above. �
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4.3.3 The Friedman–Moulin Rule

Consider cost functions C ∈ C1. Fix N and q and label the agents in increasing
order according to the size of their demands, i.e., such that q1 ≤ . . . ≤
qn. Note, that even though this ordering is mathematically meaningful the
economic interpretation is obscure in case the goods are measured in different
units of measurement.

Like the Aumann–Shapley rule, the Friedman–Moulin rule φFM (Friedman
and Moulin 1999) can be seen as generated by a production path from 0 to
q: The cost share of each agent i, xFM

i , is the integral of the marginal cost
∂iC along a path joining 0 and q by raising all coordinates at the same speed
and freezing a coordinate once it reaches qj , j ≤ i. That is, in general cost
shares are found by integration of marginal costs along the general path:
0 → (q1, . . . , q1) → (q1, q2, . . . , q2) → (q1, q2, q3, . . . , q3) → . . . → (q1, . . . , qn).
To be more precise:

• The Friedman–Moulin Rule is defined by cost shares,

xFM
i (q, C) =

∫ qi

0

∂iC((te) ∧ q)dt, for all i ∈ N, (4.6)

where e = (1, . . . , 1) and (a ∧ b) = (min{ai, bi})i∈N .

Note, that
n∑

i=1

xFM
i (q, C) = C(q).

Further, since the cost share of agent i only depends on the marginal costs
along the path

0 → (q1, . . . , q1) → (q1, q2, . . . , q2) → . . . → (q1, q2, . . . , qi−1, qi, . . . , qi),

it is independent of the demand from agents with a higher demand than i,
in line with the serial principle mentioned in Sect. 2.3.2 of Chap. 2.

For example, in the 2-agent case (N = {1, 2}) we get,

xFM
1 =

∫ q1

0

∂1C(t, t)dt

and

xFM
2 =

∫ q1

0

∂2C(t, t)dt +
∫ q2

q1

∂2C(q1, t)dt =

∫ q1

0

∂2C(t, t)dt + C(q1, q2) − C(q1, q1) = C(q1, q2) − xFM
1 .
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When all agents demand the same good and the cost function C is homo-
geneous (i.e., is a function of the total demand), then the definition in (4.6)
is equivalent to the definition of increasing serial cost sharing xIS (defined in
(2.14) in Chap. 2): The cost share of agent 1 is determined as q1 times the
average of the marginal costs from 0 to nq1 – that is,

xFM
1 = q1

C(nq1) − C(0)
nq1

=
C(nq1)

n
= xIS

1 .

The cost share of agent 2 is determined as xFM
1 plus the incremental demand

q2 − q1 times the average of the marginal cost from nq1 to q1 +(n− 1)q2, i.e.,

xFM
2 = xFM

1 + (q2 − q1)
C(q1 + (n − 1)q2) − C(nq1)

(n − 1)(q2 − q1)

= xIS
1 +

C(q1 + (n − 1)q2) − C(nq1)
n − 1

= xIS
2 ,

and so forth. Hence, in general for a homogeneous cost function we get

xFM
i =

∫ qi

0

∂iC((te) ∧ q)dt

=
∑

k≤i

∫ qk

qk−1

∂iC((te) ∧ q)dt

=
∑

k≤i

∫ qk

qk−1

C ′

(
∑

i∈N

min{t, qi}
)

dt

=
∑

k≤i

∫ qk

qk−1

C ′

(

(n + 1 − k)t +
k−1∑

l=1

ql

)

dt

=
∑

k≤i

C((n + 1 − k)qk +
∑k−1

l=1 ql) − C
(
(n − k)qk−1 +

∑k−2
l=1 ql

)

n + 1 − k

= xIS
i .

In this sense, φFM extends φIS to the case of heterogeneous demands.
Thus, it also clear that the agents do not pay a constant unit price for all

units demanded (as in Aumann–Shapley pricing) and, consequently, using
the Friedman–Moulin rule does not make the choice between the scenarios of
demand for personal goods and for baskets of goods, indifferent. Of course,
for a given demand vector and cost function we could determine unit prices
for good i as pi = xFM

i /qi, but such unit prices cannot be used in connection
with a disaggregation of qi into m individual demands for good i without
violating the spirit of the Friedman–Moulin rule (and the serial principle).
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Example 4.1 (continued). Recall the case in Example 4.1 where |N | = 2 and
costs are determined by the function

C(q) = q2 + (q1 + q2)0.5

with partial derivatives

∂1C(q) = 0.5(q1 + q2)−0.5 and ∂2C(q) = 1 + 0.5(q1 + q2)−0.5.

Let q = (q1, q2) = (1, 2) yielding total cost C(1, 2) = 2+30.5 = 3.73. Applying
the Friedman–Moulin rule results in the following cost shares:

xFM
1 ((1, 2), C) =

∫ 1

0

∂1C(t, t)dt =
∫ 1

0

0.5(2t)−0.5dt

= [2−0.5t0.5]10 = 0.71,

and

xFM
2 ((1, 2), C) =

∫ 1

0

∂2C(t, t)dt +
∫ 2

1

∂2C(1, t)dt

=
∫ 1

0

(1 + 0.5(2t)−0.5)dt +
∫ 2

1

(1 + 0.5(1 + t)−0.5)dt

= [t + 2−0.5t0.5]10 + [t + (1 + t)0.5]21 = 3.02.

Compared to the result of the Aumann–Shapley and Shapley–Shubik rule,
the resulting allocation xFM ((1, 2), C) is more equally distributed than
xSS((1, 2), C), which again is more equally distributed than xAS((1, 2), C).
This Lorenz-dominance relationship, however, does not hold generally for
concave cost functions.

Now, consider instead the cost function Ĉ(q) = q2
1 + (q1 + q2)0.5. For

q = (1, 2) we get xFM
1 ((1, 2), Ĉ) = 1.707 and xFM

2 ((1, 2), Ĉ) = 1.025.
Thus, contrary to increasing serial cost sharing in the homogeneous case,
the Friedman–Moulin rule is not order-preserving. Moreover, compared to
the result of the Aumann–Shapley and Shapley–Shubik rule, the resulting
allocation xFM ((1, 2), Ĉ) is more spread than xSS((1, 2), Ĉ), which again is
more spread than xAS((1, 2), Ĉ). Since both C and Ĉ are submodular, this
Lorenz-relation does not hold generally for submodular cost functions.

Finally, let q̄ = (2, 1) and consider the permuted vector with increasing de-
mands q̄(·) = (q̄(1), q̄(2)) = (1, 2). Total cost is C(q̄) = 2.73, which is shared as,

xFM
(1) (q̄(·), C) =

∫ q̄(1)

0

∂(1)C(t, t)dt =
∫ 1

0

(1 + 0.5(2t)−0.5)dt = 1.71,
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and

xFM
(2) (q̄(·), C) =

∫ q̄(1)

0

∂(2)C(t, t)dt +
∫ q̄(2)

q̄(1)

∂(2)C(1, t)dt

=
∫ 1

0

0.5(2t)−0.5dt +
∫ 2

1

0.5(1 + t)−0.5dt = 1.02.

Hence agent 1 pays 1.02, while agent 2 pays 1.71. �

Remark 4.3. Since the Friedman–Moulin rule is based on an increasing order-
ing of demands there is a natural counterpart based on a decreasing ordering
of demands (as in the case of decreasing serial cost sharing (2.15) in Chap. 2).

Let the Decreasing Friedman–Moulin rule φDFM be defined by cost shares:

xDFM
n (q, C) =

∫ qn

0

∂nC(t, . . . , t)dt,

xDFM
n−1 (q, C) =

∫ qn

0

∂n−1C(t, . . . , t)dt −
∫ qn

qn−1

∂n−1C(t, . . . , t, qn)dt,

and

xDFM
i (q, C) =

∫ qn

0

∂iC(t, . . . , t)dt−
∫ qn

qn−1

∂iC(t, . . . , t, qn)dt − . . . −
∫ qi+1

qi

∂iC(t, . . . , t, qi+1, . . . , qn)dt,

for i = 1, . . . , n−2. Note that
∑n

i=1 xDFM
i (q, C) = C(q). Moreover, note that

the increasing and decreasing versions of the Friedman–Moulin rule coincide
when the cost function is additive, i.e., when C(q) =

∑n
j=1 cj(qj), and that

the cost shares of the decreasing version may be negative contrary to the cost
shares of the (increasing) Friedman–Moulin rule. �

Example 4.3. In order to compare the increasing and decreasing version of
the Friedman–Moulin rule, consider the case with N = {1, 2} and a Cobb-
Douglas cost function C(q) = qα1

1 qα2
2 , for positive numbers α1 and α2. Using

the (increasing) Friedman–Moulin rule in this case, we get that the agent
with the smallest demand pays a fixed proportion of the total cost in case
both agents had demanded q1, i.e.,

xFM
1 =

α1

α1 + α2
qα1+α2
1 ,

(and consequently agent 2 pays the residual). Using the decreasing rule we
get the natural mirror image being that the agent with the largest demand
pays a fixed proportion of the total cost in case both agents had demanded
q2, i.e.,
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xDFM
2 =

α2

α1 + α2
qα1+α2
2

(and consequently agent 1 pays the residual). Note that unlike the decreasing
serial cost sharing rule of the homogeneous case, concavity of C is not enough
to guarantee non-negative cost shares of the decreasing version of the Moulin–
Friedman rule. In the present example, concavity is tantamount to α1+α2 ≤ 1
which does not guarantee that the cost share of agent 1 is positive, i.e., that

xDFM
1 = qα1

1 qα2
2 − α2

α1 + α2
qα1+α2
2 ≥ 0.

For example, if q = (1, 5) and α = (0.5, 0.5) then xDFM
1 = −0.26. It is

conjectured, however, that submodularity of C is a sufficient condition for
non-negative cost shares of the decreasing version of the Friedman–Moulin
rule (e.g., notice that the Cobb-Douglas cost function is supermodular and
that the cost shares xDFM related to the submodular cost functions C and
Ĉ of Example 4.1 are all positive). �

Remark 4.4. Koster et al. (1998) and Tejedo and Truchon (2002) represent
two attempts to extend increasing serial cost sharing to the scenario where
agents demand baskets of goods. In case agents demand baskets of goods there
is simply no obvious way to rank these baskets and consequently no obvious
way to redefine the serial principle. Thus, there is potentially an infinite
number of possible serial extensions. For example, demands may be ordered
according to their stand-alone costs C(qi) and the intermediate production
levels determined as r0 = 0 and rk =

∑k
z=1 qz +

∑n
z=k+1 ρR(C, qk, qz) for

k = 1, . . . , n, where ρR(C, qk, qz) = C(qk)
C(qz)q

z. Now, using the formula for
Increasing Serial Cost sharing (defined in (2.14) of Chap. 2) with respect to
these intermediate production levels defines a rule, which is called the Radial
Serial Rule in Koster et al. (1998). A generalization of this type of rule is
further analysed in Tejedo and Truchon (2002). �

4.4 Axiomatic Characterization

The Aumann–Shapley, Shapley–Shubik and Friedman–Moulin cost sharing
rules have many appealing properties in common. For example, Friedman
(2003) (see also Haimanko 2000) demonstrates that these three rules are dis-
tinguished members of a rich class of cost sharing rules satisfying Additivity
(defined as usual with respect to cost functions) and

• Dummy: Agent i’s costs share φi(q, C) = 0 whenever ∂iC(z) = 0 for all z.

Loosely speaking, this class consists of convex combinations of “path gen-
erated” rules (like the Aumann–Shapley and Friedman–Moulin rule – the
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Shapley–Shubik rule is a convex combination of path generated incremen-
tal rules). In this connection it is worth to note that under Additivity, the
property of Dummy is equivalent to the normatively compelling property of

• Separability: If C(z) =
∑n

j=1 cj(zj) where cj is non-decreasing and
cj(0) = 0 for all j, then φi(q, C) = ci(qi) for all i ∈ N .

In Chaps. 2 and 3, concerning the cases of homogeneous and binary de-
mands, the axiomatic characterizations of cost sharing rules were centered
around various versions of the consistency property. Basically, consistency
requires that removing an agent, and adjusting the cost function properly
for that agents’ cost share, does not alter the cost shares of the remaining
agents. There are many ways to adjust the cost function, but as argued in
Friedman (2003) it seems natural to suggest a straightforward extension of
consistency as defined for the model with homogeneous demand (in Moulin
and Shenker 1994– and for binary demands by Hart and Mas-Colell 1989).
Therefore, let consistency be defined as follows:

• Consistency: For cost sharing problems (q, C) where C ∈ C2,

φj(q, C) = φj(qN\i, CN\i)

for j �= i, where CN\i = C(qN\i, qi) − φi((qN\i, qi), C).

Given that the cost sharing rule satisfies Additivity and Dummy we get that
CN\i(0) = 0 and that CN\i can be made non-decreasing by adding terms of
the form F =

∑
j∈N f(xj) which are then rendered irrelevant by Additivity

and Dummy. Friedman (2003) shows that Consistency is satisfied by all three
rules of Sect. 4.3.

However, there are also important properties, which separates the
Aumann–Shapley, the Shapley–Shubik and the Friedman–Moulin rule.

As mentioned in Sect. 2.2.3 (Chap. 2), scale invariance seems to be a rather
fundamental property since it states that cost shares are independent of the
units of measurement. In the rationing model this was a quite obvious re-
quirement but it seems reasonable also in the present set-up since the way
to share costs still ought to be independent of units of measurement even
though demand now concerns different goods. Formally:

• Scale Invariance: Let (q, C) and (q′, C ′) be two scale equivalent cost shar-
ing problems. Then φi(q, C) = φi(q′, C ′) for all i ∈ N .

Scale invariance is satisfied by both the Aumann–Shapley and the Shapley–
Shubik rule. In fact, as shown in Sprumont (1998) the Shapley–Shubik rule
satisfies the stronger property of ordinal invariance (i.e., invariance for ordi-
nally equivalent problems) and is the only additive such rule.

However, considering the model where agents demand baskets of goods,
Kolpin (1996) demonstrates that we cannot find a scale invariant and additive
extension of serial cost sharing. With respect to the present model it can also
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be shown that the Friedman–Moulin rule does not satisfy scale invariance as
done in the example below.

Example 4.1 (continued). Consider a simple rescaling where (q′1, q
′
2) =

(q1, 0.5q2) and C ′(q′) = 2q′2 + (q′1 + 2q′2)
0.5. Let q = (1, 2) and conse-

quently q′ = (1, 1). Using the Friedman–Moulin rule with respect to the
problem (q′, C ′) we get,

xFM
1 ((1, 1), C ′) =

∫ 1

0

∂1C
′(t, t)dt =

∫ 1

0

0.5(3t)−0.5dt

= [3−0.5t0.5]10 = 0.58 �= xFM
1 ((1, 2), C) = 0.71,

and

xFM
2 ((1, 1), C ′) =

∫ 1

0

∂2C
′(t, t)dt =

∫ 1

0

(2 + (3t)−0.5)dt

= [2t + 3−0.52t0.5]10 = 3.15 �= xFM
2 ((1, 2), C) = 3.02.

However, note that xFM
i ((1, 1), C ′) = xAS

i ((1, 1), C ′) = xAS
i ((1, 2), C) for

i ∈ {1, 2}. �

Demand monotonicity is another relevant property stating that if the de-
mand of a given agent increases (ceteris paribus) then this agent cannot end
up paying less than before. As such, the property is clearly linked to incen-
tive issues: in case Demand Monotonicity is violated, and goods are freely
disposable, some agents may have incentive to misrepresent their demand
and thereby waste resources for the group as a whole. Moreover, it can be
argued that by requiring Demand Monotonicity the agents are made at least
weakly responsible for their own demand. Formally we have:

• Demand Monotonicity: Let (q, C) and (q′, C) be two cost sharing problems
and let i ∈ N . If qi ≤ q′i and qj = q′j for all j ∈ N \ i then φi(q, C) ≤
φi(q′, C).

Demand monotonicity is satisfied by the Shapley–Shubik and the
Friedman–Moulin rule but not by the Aumann–Shapley rule as demon-
strated in Friedman and Moulin (1999) using the following example.

Example 4.4. Let N = {1, 2} and let Ĉ = (q1q2)/(q1 + q2). For agent 1 the
Aumann–Shapley cost share is determined by

xAS
1 (q, Ĉ) = q1

∫ 1

0

∂1C(tq1, tq2)dt =
q1q

2
2

(q1 + q2)2
,

which is not monotonic in q1 (increases for q1 ∈ [0, q2] and then decreases for
q1 > q2). �
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Note, however, that the Aumann–Shapley rule satisfies Demand
Monotonicity on the particular class of Cobb-Douglas cost functions, i.e.,
functions C̄(q) = qα1

1 qα2
2 . . . qαn

n for positive numbers αj . In this case
xAS

i (q, C̄) = αiC(q)/
∑n

j=1 αj for all i ∈ N, so all agents pay a fixed
fraction of total costs. Hence, it is very likely that agents will demand too
much compared to what is optimal from the point of view of the group as
whole, highlighting that Demand Monotonicity is a rather weak requirement
for making agents responsible for their own demand.

Moreover, recall that the Aumann–Shapley rule relates to a fixed unit
price and consequently makes the choice between modeling agent specific de-
mands, and demands for baskets of goods, indifferent. It is an open question
whether Demand Monotonicity is a relevant property if we construe demands
qi as aggregates of individual demands, i.e., as in the case where agents de-
mand baskets of goods. Imagine for example, that one agent starts demanding
some good (demand used to be zero), then why should all other agents with
unchanged demands for this (and all other) good(s) suddenly risk paying a
larger unit price for this particular good? As such the relevance of Demand
Monotonicity is less obvious for rules that relate to a fixed unit price as, e.g.,
the Aumann–Shapley rule.

In the cost sharing literature, there exists a number of characterizations of
the individual cost sharing rules. Theorem 4.1, presents a selection of those
related to the properties discussed above.

Theorem 4.1 (Billera and Heath 1982; Mirman and Tauman 1982;
Sprumont 1998; Friedman and Moulin 1999). Fix N . For cost sharing
problems where q ∈ Rn

+ and C ∈ C1, then among cost sharing rules satisfying
the Additivity and the Dummy axiom:

1. The Aumann–Shapley rule φAS is the unique rule that satisfies Scale In-
variance and extends the average cost rule φAC .

2. The Shapley–Shubik rule φSS is the unique rule that satisfies Ordinal In-
variance and Equal Treatment2 (alternatively, Ordinal Invariance may be
replaced by Scale Invariance and Demand Monotonicity).

3. The Friedman–Moulin rule φFM is the unique rule that satisfies Demand
Monotonicity and extends the increasing serial cost sharing rule φIS.

The first part of the theorem (1) is proved in Billera and Heath (1982)
and Mirman and Tauman (1982). The second part (2) is proved in Sprumont
(1998) while the alternative statement is proved in Friedman and Moulin
(1999). Finally the third part (3) is proved Friedman and Moulin (1999).

Besides the property of Demand Monotonicity, other monotonicity proper-
ties of cost sharing rules may be relevant in order to create the right incentives
when applied in decentralized organizations. Indeed it could be argued, as in

2 In the sense that, if C is symmetrical in the demands of i and j and qi = qj then
φi(q, C) = φj(q, C).
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Young (1985), that a more efficient technique of production (one with lower
marginal costs) should never lead to higher imputed costs. Formally, this
could be interpreted as if, for any two problems (q, C) and (q,G) where
C,G ∈ C1, and any i ∈ N, that ∂iC(z) ≥ ∂iG(z) for 0 ≤ z ≤ q (that is, G is
more efficient producing good i than C, given the level of demand) then we
should require that φi(q, C) ≥ φi(q,G). It can be shown that all three rules of
Sect. 4.3 satisfies this requirement, see, e.g., Friedman (2004). However, if the
same logic is used to allow for a comparison between unit prices of different
products in different cost functions, a unique rule is singled out. Formally,
we define the property of cross monotonicity in unit prices as follows:

• Cross Monotonicity in Unit Prices: If, for any two problems (q, C) and
(q,G) where C,G ∈ C1 and for any i, j ∈ N that ∂iC(z) ≥ ∂jG(z) for
0 ≤ z ≤ q then pi = φi(q, C)/qi ≥ φj(q,G)/qj = pj .

Monotonicity in this form is a rather strong requirement stating that, given
actual demand q, if it is more efficient to produce good j on machine G, than
good i on machine C, then the unit price associated with good j should be
smaller than the unit price associated with good i.

Theorem 4.2 (Young 1985). The Aumann–Shapley rule φAS is the unique
cost sharing rule that satisfies Cross Monotonicity in Unit Prices.

A proof can be found in Young (1985).
Yet another kind of monotonicity condition, which concerns agents incen-

tives to misrepresent their true demand is the following: If agent i increases
his demand then any coalition of agents that includes agent i should experi-
ence increasing total costs (that is, the sum total of the cost shares of agents
in the coalition should increase). Otherwise the coalition has incentives to
let agent i increase his demand. For example, if a cost sharing rule is used
that satisfies Demand Monotonicity, then the other agents are simply able to
compensate agent i for his increasing costs and still benefit from the action.

In a discrete model (that is, a model with integer demands) it is demon-
strated in Moulin and Sprumont (2005) that (for n ≥ 3) no cost sharing
rule satisfies Additivity, Dummy and monotonicity in the above sense and
consequently non of the three rules of Sect. 4.3 (in discrete versions) satisfy
this kind of monotonicity condition. It is tempting to conjecture that this
result holds true in the present model. Consider Example 4.4., which demon-
strates that the Friedman–Moulin rule (that satisfies Additivity and Dummy)
violates the above notion of monotonicity.

Example 4.5. Let N = {1, 2, 3} and let q = (q1, 2, 3) where q1 ∈ [0, 2]. Con-
sider the following (non-decreasing) cost function: Let f(x) = (1+10e−10x)−1

and

C(q) = q1 + (0.1 + 2f(q1 − 0.8))q2 + (1 − f(q1 − 0.8)f(10q2 − 5q3))q3.
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Letting the parameter q1 start to increase from 0, the Friedman–Moulin cost
share of agent 1 increases (φFM satisfies Demand Monotonicity). However,
the sum of Friedman–Moulin cost shares of agent 1 and 3 (xFM

1 + xFM
3 )

decreases for q1 ∈ [0.8, 1.2]. �

4.4.1 Non-additive Extensions

In Friedman and Moulin (1999) it is demonstrated that Additivity is the
cause of many incompatibilities when extending the average and serial cost
sharing rules. For example, an additive extension of average cost sharing
cannot satisfy Demand Monotonicity and an additive extension of serial cost
sharing cannot satisfy Scale Invariance. Thus, Additivity must be abandoned
if such properties are to be compatible.

Consider first non-additive extensions of average cost sharing: Clearly, not
all non-additive extensions of average cost sharing satisfies both Demand
Monotonicity and Scale Invariance. For instance, proportionally adjusted
marginal cost pricing, xPMC , as defined in (4.3), is a non-additive exten-
sion of average cost sharing that satisfies Scale Invariance but not Demand
Monotonicity.

It is therefore striking that Sprumont (1998) presents a non-additive ex-
tension of average cost sharing that satisfies both Demand Monotonicity and
Ordinal Invariance (an thereby Scale Invariance) defined as follows.

Restrict attention to 2-agent problems (q, C) where q ∈ R2
+ and C ∈

C2. A cost sharing problem (q, C) is said to be proportionally normalized if
∂iC(rq) = 1 for i = 1, 2 and all r ≥ 0. Sprumont proves that to each problem
(q, C) there is a unique proportionally normalized problem which is ordinally
equivalent to (q, C) – let this problem be denoted (q∗, C∗).

Now, the ordinally proportional rule φOP is defined using the average cost
sharing rule φAC with respect to the proportionally normalized (and ordinally
equivalent) problem, i.e., given by cost shares

xOP
i (q, C) =

q∗i
q∗1 + q∗2

C(q) (4.7)

for i = 1, 2.
In the homogeneous case where C(q) = c(q1 + q2) it can be shown that

q∗i = qi/c−1(1) and hence

xOP
i (q, C) =

q∗i
q∗1 + q∗2

C(q) =
qi/c−1(1)

(q∗1 + q∗2)/c−1(1)
C(q) =

qi

q1 + q2
C(q),

i.e., φOP is indeed an extension of average cost sharing φAC .
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It is tempting to generalize this approach to n-agent cost sharing problems
but with more than two agents we are no longer guaranteed that a unique
proportionally normalized (and ordinally equivalent) problem exists for each
cost sharing problem. Sufficient conditions for this are provided in Wang and
Zhu (2002).

For specific cost sharing problems it may be very hard to determine the
problem (q∗, C∗) so unfortunately practical use of the rule seems rather
limited.

Next, consider non-additive extensions of serial cost sharing. Sprumont
(1998) argues that a natural extension of the serial principle relates to a
ranking of cost shares rather than a ranking of demands as in homogeneous
case. As mentioned earlier it is economically meaningless to compare the size
of demands for different goods while it makes sense to compare monetary
values. The serial principle could therefore be reinterpreted as requiring that
an agent’s cost share should be independent of changes in the demands of
agents who pay (and not demand) more than him.

While this seems a natural extension of the serial principle it clearly ex-
cludes the straightforward candidate for an extension of the increasing serial
rule, i.e., the Friedman–Moulin rule, since φFM is not order-preserving (cf.
Example 4.1). However, as shown in Sprumont (1998) there is a related ver-
sion, called the Moulin–Shenker rule, which satisfies this (new) version of the
serial principle as well as Ordinal Invariance and (as do any rule that satisfies
the (new) serial principle) Demand Monotonicity.

Formally, fix N and consider a cost sharing problem (q, C) where C ∈ C2.
Instead of raising all “active” coordinates at the same speed as done using
the path P (t) = (te) ∧ q related to the Friedman–Moulin rule, we now use
a path P̃ (t) determined by the unique solution to the following system of
differential equations for each agent i,

P̃ ′
i (t) =

{
1

∂iC(P̃ (t))
P̃i(t) < qi

0 otherwise

for which P̃ (0) = 0. In this way, “active” coordinates are raised at a speed,
which equals the marginal cost among all agents with “active” coordinates.

The Moulin–Shenker rule φMS is now defined by the cost shares,

xMS
i (q, C) =

∫ ∞

0

∂iC(P̃ (t))P̃ ′
i (t)dt, (4.8)

for i = 1, . . . , n.
Sprumont (1998) offers a characterization based directly on the serial prin-

ciple. An alternative characterization based on a version of consistency is
found in Koster (2007).

Also in this case it may be very hard to determine the cost shares for
specific problems limiting the practical relevance of the rule.
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4.5 Practical Application by Convex Envelopment
of Cost Data

Following Hougaard and Tind (2009), the present section will demonstrate
that practical application of the cost sharing rules of Sect. 4.3 is simple using
a non-parametric approach to estimate the cost function based on registered
cost data.

Let {(qj , Cj)}j=1,...,h be a set of h observations of (output) vectors qj ∈ Rn
+

and their associated production cost Cj ∈ R+. These observations can be
construed as originating either from the same firm over h time periods or
from h different firms at a given point in time.

We may consider costs C as the result of producing output vector q. Hence,
a “cost” possibility z is a data point (q, C) ∈ Rn

+×R+ where C is the possible
cost associated with producing q. Denote by C ⊂ Rn+1 the cost possibility
set and assume:

Convexity: If z, z′ ∈ C then λz + (1 − λ)z′ ∈ C for λ ∈ [0, 1].
Decreasing returns: If z ∈ C then λz ∈ C for λ ∈ [0, 1].
Free disposability: Let z = (q, C) ∈ C and let q′ ≤ q and C ′ ≥ C then
z′ = (q′, C ′) ∈ C.

For a given data set {(qj , Cj)}j=1,...,h ∈ {Rn+1}h we obtain an empirical
estimate C∗ of the cost possibility set C as the intersection of sets satisfying
the three conditions above, which contains all the data points, i.e., as,

C∗ = {(q̂, Ĉ) ∈ Rn+1
+ |

h∑

j=1

λjqj ≥ q̂,

h∑

j=1

λjCj ≤ Ĉ,

h∑

j=1

λj ≤ 1, λj ≥ 0,∀j}.

Let Q∗ = {q|∃C̄ : (q, C̄) ∈ C∗} be the set of possible productions q given
the observed data set.

Alternatively we may replace the assumption of decreasing returns (in
production) with the assumption:

Constant returns: If z ∈ C then λz ∈ C for λ ≥ 0.

In this case we get

C∗ = {(q̂, Ĉ) ∈ Rn+1
+ |

h∑

j=1

λjqj ≥ q̂,

h∑

j=1

λjCj ≤ Ĉ, λj ≥ 0,∀j}.

Now, the (efficient) boundary of C∗ is a non-parametric estimate of the cost
function C(q). Note that due to convexity of C∗ the estimated cost function
C∗(q) will be convex and piecewise linear. The convexity assumption may be
relaxed (see, e.g., Bogetoft 1996, Bogetoft et al. 2000) but, for the present
purpose we continue with the convex version above.
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Note that even though the estimate C∗ is not differentiable in general, it
is continuously differentiable along a line segment [0, z], except perhaps for
finitely many points. Thus, both the Aumann–Shapley and the Friedman–
Moulin rule are well defined with respect to the estimate C∗.

4.5.1 Cost Allocation Using Data Envelopment

First consider calculation of the Aumann–Shapley cost shares with respect
to the estimate C∗. In connection with transportation problems, Samet et al.
(1984) suggested to use parametric programming (see, e.g., Taha 1989) to
determine the Aumann–Shapley cost shares. Here the same technique is used
to determine the Aumann–Shapley prices, which are easily found as a fi-
nite sum of gradients of the linear pieces of C∗ along the line segment [0, q]
weighted with the normalized length of the subintervals where C∗ has con-
stant gradient.

Select a given demand vector q̂ ∈ Q∗. In our case, we first consider param-
eter values t ∈ [0, 1] and solve

min
h∑

j=1

λjCj (4.9)

s.t.
h∑

j=1

λjqj ≥ tq̂ (4.10)

h∑

j=1

λj ≤ 1 (4.11)

λj ≥ 0,∀j. (4.12)

As a result we get the relevant subintervals of [0, q̂] for which the gradients are
constant, i.e., a series of values tm for which the gradient is constant on the
interval [tm−1, tm]. The values of the gradients are equal to the values of the
optimal dual variables corresponding to the constraints (4.10). The optimal
dual variable corresponding to the convexity constraint (4.11) is usually non-
zero. In technical terms, we may consider the Aumann–Shapley allocation
procedure as a way to transfer and allocate the value of this dual variable to
the dual variables corresponding to (4.10) as illustrated in Example 4.5.

If the convexity constraint (4.11) is removed, we get a constant returns to
scale version of the problem, i.e.
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min
h∑

j=1

λjCj

s.t.
h∑

j=1

λjqj ≥ tq̂

λj ≥ 0,∀j.

In this model the gradients are the same all over the interval [0, q̂] with values
determined by the optimal dual variables, and by linear programming duality
they can be applied directly in the cost sharing problem as Aumann–Shapley
prices.

Example 4.6. Consider the following cost data from four observations:

Obs. q1 q2 C

1 2 3 6
2 3 1 5
3 4 5 15
4 5 2 10

Consider demand vector q̂ = (4, 3) and define q̄ = (q̄1(t), q̄2(t)) =
(q̂1t, q̂2t) = (4t, 3t). Hence, we solve the following problem:

min 6λ1 + 5λ2 + 15λ3 + 10λ4

2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 4t

3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3t

λ1 + λ2 + λ3 + λ4 ≤ 1
λi ≥ 0 for i = 1, . . . , 4.

By parametric linear programming we get, omitting the t argument in the
q̄ variables:

t Objective function
0 ≤ t ≤ 7

11 = 0.64 9
7 q̄1 + 8

7 q̄2

7
11 ≤ t ≤ 11

13 = 0.85 9
5 q̄1 + 7

5 q̄2 − 9
5

11
13 ≤ t ≤ 1 17

8 q̄1 + 19
8 q̄2 − 43

8

From the above table we get Aumann–Shapley cost shares

xAS
1 = 4 × {9

7
× 7

11
+

9
5
× (

11
13

− 7
11

) +
17
8

× (1 − 11
13

)} = 6.09

and

xAS
2 = 3 × {8

7
× 7

11
+

7
5
× (

11
13

− 7
11

) +
19
8

× (1 − 11
13

)} = 4.16.
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Observe that total cost is xAS
1 + xAS

2 = 10.25 which is equal to the objective
function value of the above program when t = 1, as it should be.

The third convexity constraint is binding and receives in this case a non-
zero dual variable value which is equal to the element − 43

8 in the last row
of the table. Again from the last row we see that the optimal dual variable
corresponding to the first element in the demand vector is equal to 17

8 = 2.125.
Multiplication of this price by the demand q̂1 = 4 gives the value of 8.50.
The difference between xAS

1 and this value is −2.41. The similar difference
corresponding the second element of the demand vector is −2.96. The two
differences add to −5.37 = − 43

8 which is equal to the value of the optimal
dual variable corresponding to the convexity constraint, as it should be. In
this way the dual variable for the convexity constraint is distributed on to
the values of the demand vector.

The corresponding constant returns to scale model, obtained by removal
of the convexity constraint, is

min 6λ1 + 5λ2 + 15λ3 + 10λ4

2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 4t

3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3t

λi ≥ 0 for i = 1, . . . , 4.

(4.13)

In this case we get the same objective function for all t as shown by the
table:

t Objective function
0 ≤ t ≤ 1 9

7 q̄1 + 8
7 q̄2

The optimal dual variables for the two constraints of the program (4.13)
are ( 9

7 , 8
7 ) and they are equal to the coefficients of the objective function in

the above table, as they should be. This confirms that the cost allocation
by the Aumann–Shapley method in the case of constant return to scale is
equivalent to a cost allocation based on the optimal dual variables of the
model. In this case it is not necessary to allocate dual variables arising from
an additional (convexity) constraint. �

The same type of technique can be used to determine the cost shares
of the Friedman–Moulin rule. Consider a demand vector q̂ ∈ Q∗ and let
q̂(·) = (q̂(1), . . . , q̂(n)) be the vector q̂ where the indices have been permuted
such that they are in increasing order, i.e., q̂(1) ≤ . . . ≤ q̂(n). Moreover, define
vectors v0 = (0, . . . , 0), v1 = (q̂(1), . . . , q̂(1)), v2 = (q̂(1), q̂(2), . . . , q̂(2)), . . . ,
vi = (q̂(1), . . . , q̂(i−1), q̂(i), . . . , q̂(i)), . . . , vn = q̂(·).

We now have to solve n problems for s = 0, . . . , n − 1, and parameter
values t ∈ [0, 1],

min
h∑

j=1

λjCj

s.t.
h∑

j=1

λjqj ≥ vs + t(vs+1 − vs) (4.14)
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h∑

j=1

λj ≤ 1

λj ≥ 0,∀j.

Again we obtain the relevant subintervals of the path

[v0, v1], [v1, v2], . . . , [vn−1, vn]

for which the gradients are constant, i.e., a series of values tm for which the
gradient is constant on the interval [tm−1, tm]. We may then determine the
gradients on all such subintervals and determine the Friedman–Moulin cost
shares as illustrated by the following example.

Example 4.6 (continued). Continuing the previous example we get that
(q̂(2), q̂(1)) = (q̂1, q̂2) = (4, 3), v1 = (3, 3) and v2 = (3, 4). Hence for s = 0 we
shall solve

min 6λ1 + 5λ2 + 15λ3 + 10λ4

2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 3t

3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3t

λ1 + λ2 + λ3 + λ4 ≤ 1
λi ≥ 0 for i = 1, . . . , 4.

This results in the table:

t Objective function
0 ≤ t ≤ 7

9 = 0.78 9
7 q̄1 + 8

7 q̄2
7
9 ≤ t ≤ 11

12 = 0.92 9
5 q̄1 + 7

5 q̄2 − 9
5

11
12 ≤ t ≤ 1 17

8 q̄1 + 19
8 q̄2 − 43

8

The contribution to xFM
1 from this table is

3 ×
{

9
7
× 7

9
+

9
5
×

(
11
12

− 7
9

)

+
17
8

×
(

1 − 11
12

)}

= 4.281

and to xFM
2

3 ×
{

8
7
× 7

9
+

7
5
×

(
11
12

− 7
9

)

+
19
8

×
(

1 − 11
12

)}

= 3.843.

Next for s = 1 we shall solve

min 6λ1 + 5λ2 + 15λ3 + 10λ4

2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 3 + t

3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3
λ1 + λ2 + λ3 + λ4 ≤ 1

λi ≥ 0 for i = 1, . . . , 4.
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implying the table:

t Objective function
0 ≤ t ≤ 1 17

8 q̄1 + 19
8 q̄2 − 43

8

The contribution to xFM
1 is

1 × 17
8

× 1 = 2.125

and to xFM
2

0 × 19
8

× 1 = 0.

Hence, in total, the Friedman–Moulin cost shares are given by

xFM
1 = 4.281 + 2.125 = 6.41

and
xFM

2 = 3.843 + 0 = 3.84.

Again total cost is xFM
1 + xFM

2 = 10.25 as it should be. So the Friedman–
Moulin case puts a larger cost share on q1 in comparison to the Aumann–
Shapley case. Again we see that the value of the dual variable of the convexity
constraint − 43

8 = −5.37 is allocated to the values of the demand vector, but
this time with the shares −2.09 and −3.28 respectively for output 1 and
output 2. �

4.6 Comments

Contrary to the (homogeneous) one-good model in Chap. 2, manipulability in
the form of reshuffling, merging or splitting of demands does not make sense
in the present “personalized” goods framework. Merging (and reshuffling)
of demands would imply that goods measured in different units should be
added, which is meaningless and splitting would require the definition of
a “new” cost function over Rn+1

+ instead of Rn
+. Allocations can therefore

only be manipulated by the agents’ strategic choice of demand qi. To some
extent this problem has been highlighted by the monotonicity conditions
in Sect. 4.4, but further analysis of such situations requires the knowledge
of agents preferences, which is not available in the present model. Notice,
however, that if we consider the model where agents demand baskets of goods
and we use, for instance, the Radial Serial rule (defined in Remark 4.4.) agents
may manipulate through merging and splitting of demands.

Contrary to the (binary demands) model in Chap. 3, it is debatable
whether the stand-alone cost requirements are relevant in the present model
since typically it will not be possible for agents to “stand-alone” and the
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relevance of the no-subsidy argument may be questionable. Translated to the
present framework the stand-alone cost principle states that

∑

i∈S

xi ≤ C({qi}i∈S , 0, . . . , 0) for all S ⊆ N.

As mentioned in Moulin (2002) there is a conflict between additive rules and
the stand-alone cost principle. However, additivity and the stand-alone cost
principle may be reconciled when the cost function C is submodular.

Finally, we have ignored the scenario where a fixed amount F must be
allocated among a group of agents i = 1, . . . , n with multiple characteristics
qij , j = 1, . . . ,m. For example, in the case where a set of branches, charac-
terized by similar (multiple) production activities, must share the costs of a
common marketing campaign. Clearly, there is no straightforward solution
to this problem and consequently there has been many ad hoc suggestions.
However, Beasley (2003) presents an interesting approach: Imagine that there
existed a set of common characteristic weights αj . Then, for instance, costs
could be allocated in proportion to weighted characteristics. Now, as these
weights typically do not exist we may elicit such weights under the assumption
that the weighted characteristics per unit of cost is identical for all agents.
To be more specific, for each agent i we may determine cost shares xi and
weights αj such that the cost share of i is minimized (maximized) subject
to constraints stating that

∑m
j=1 αjqij/xi = 1 for all i and

∑n
h=1 xh = F

(with xh ≥ 0 and αj > 0). In this way we obtain, for each agent, a lower and
an upper bound on the cost share which is compatible with the assumption
that weighted characteristics per unit of cost is identical for all agents. A
specific allocation can now be chosen according to various additional criteria
as discussed in Beasley (2003). Note that the approach is operational in the
sense that all computations only involve linear programming.

4.7 Summary

Generalizing the one-good cost sharing model of Chap. 2 to a multiple goods
framework, as in the present chapter, considerably increases the complexity
of the model. It is no longer obvious how to interpret the allocation problem
and there are no straightforward and uniquely determined way to extend the
cost sharing rules known from the one-good model. Basically the allocation
problem can be interpreted either as that of a group of agents each demand-
ing baskets of goods and sharing the common cost of the aggregate demand
or as that of a group of agents each demanding a specific type of good (“per-
sonalized” good) and sharing the common cost of the groups demand profile.
The present chapter focuses on the latter scenario while the former scenario
is relatively unexplored in the literature.
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Once it is decided which type of allocation problem that is most relevant it
is simple to transform the problem into one of binary demands as in Chap. 3
and then use the allocation rules associated with this model (for instance
the Shapley value – to be called the Shapley–Shubik rule in the present
framework). Loosely speaking, it can be shown that if additivity and ordinal
invariance are important properties of the allocation rule then the Shapley–
Shubik rule is the one to apply. There are also non-additive and ordinally
invariant rules, but they are quite complex and difficult to apply in practice.
In any case, ordinal invariance is a very convenient and desirable (though
very strong) property in a type of modeling framework where we basically
try to compare demand for apples with demand for oranges.

Now, in the economics literature the Aumann–Shapley rule has been the
dominating recommendation in a multiple goods framework. This rule ex-
tends the average cost sharing rule of the one-good model and hence has the
advantage of having a clear cut economic interpretation as well as being easy
to use in practice (as demonstrated in Sect. 4.5). It is not ordinally invariant
(which is a rather strong requirement) but satisfies scale invariance which
seems to be a quite fundamental property with respect to any version of the
model. Moreover, since the Aumann–Shapley rule implies that all agents pay
a fixed price per unit of demand, the model where agents demand baskets of
goods becomes equivalent to the model where agents demand “personalized”
goods.

Lately, however, the Aumann–Shapley rule has been criticized on the basis
of the fact that it does not satisfy a weak form of demand monotonicity (i.e.,
if demand increases so does the cost share). Loosely speaking, this can be seen
as the “price” for having a rule that assigns cost shares according to fixed
unit prices and while demand monotonicity seems relevant in the scenario
where agents demand personalized goods its relevance is questionable in the
scenario where agents demand baskets of goods. Demand monotonicity is
satisfied by the Shapley–Shubik rule as well as the Friedman–Moulin rule
(being an extension of the increasing serial cost sharing rule of the one-good
model). But the latter rule does not satisfy scale invariance and the fact that
this rule requires that demands are increasingly ordered makes the economic
interpretation somewhat obscure in the framework of personalized goods.
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Chapter 5

Sharing in Networks

5.1 Introduction

Various forms of networks have always played important roles in the economy,
and in view of the recent growth of telecommunication and economic activities
related to the Internet, an understanding of network formation and allocation
problems within networks seems particularly challenging.

Networks have been studied intensively in Physics (in order to understand
and predict behaviour in such systems, see, e.g., Newman 2003 for a survey)
and in Operations Research (where focus is on algorithm design and compu-
tational complexity, see, e.g., Magnanti and Wolsey 1995 for a survey). Both
streams of literature typically use graphs as a convenient representation of
networks. Economic issues such as allocation, efficiency and network forma-
tion, on the other hand, have primarily been addressed by economists and
game theorists.

In the present chapter we shall focus on the latter approach and con-
sider three main scenarios: The first concerns the minimum cost spanning
tree model where a group of agents shall be connected to a common source
(sometimes considered as the supplier) in the least costly way. It is assumed
that there are no externalities in the network so the problem can be rep-
resented solely by the costs of connecting all pairs of agents (including the
source) represented by a link cost matrix. Allocating the total cost associated
with the least costly way to connect all agents to the source can then be done
using an allocation rule φ defined over the set of possible link cost matrices,
given the set of agents.

The second scenario concerns a model of demand-based cost allocation.
The network is characterized by network externalities and a proxy for these
are given by a “communication” matrix stating the amount of communi-
cation between every pair of agents in the network. Each agent is further
characterized by an individual connection cost, i.e., the cost of being con-
nected to the entire network. In this sense the cost structure is much simpler
than in the first scenario. The total cost of the network (i.e., the sum of
individual connection costs) is then allocated among the agents using an al-
location rule φ, which takes the profile of individual connection costs and/or
the “communication” matrix into account.

J.L. Hougaard, An Introduction to Allocation Rules,
DOI 10.1007/978-3-642-01828-2 5, c© Springer-Verlag Berlin Heidelberg 2009
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Finally, the third scenario concerns the quite general case where any net-
work related to a given group of agents has a value modeled by a value
function (positive or negative). In other words, the particular way that the
agents are connected is important for the value of their network relation. This
is, for example, quite obviously the case for various types of social networks.
An allocation rule then allocates the value of the network among the agents
involved.

Consider the following examples related to the scenarios above:

1. Recall the case of airport landing fees mentioned in Chap. 3 where the cost
structure related to the building of runways was simplified by the fact that
larger aircrafts require longer runways. Therefore the least costly way to
build a runway can be modeled by a simple network where a number
of nodes (here being types of aircrafts) are connected as a chain. The
“source” of the network represents the beginning of the runway, the first
node represents the length required by the smallest type of aircraft, etc.
With every link between two nodes in the network there is an associated
cost of building that particular incremental part of the runway. Clearly,
there are no network externalities. The “runway” network is a minimal
cost spanning tree in the sense that it minimizes the costs of connecting
every node to the source (where nodes may be connected indirectly, that
is, connected to the source via other nodes that are connected to the
source). Clearly, a star-shaped network representing the case where all
types of aircrafts have their own runway is the opposite and most costly
alternative to the chain.

2. Consider a telecommunication network where the traffic between agents is
given by a traffic matrix measuring, for instance, hours of communication
between any pair of agents per month. This information will typically be
available from the network operator. Moreover, each agent is characterized
by a connection cost, which is the cost in terms of local wires, switching
cards, etc. Assume that there are no other costs connected with the net-
work. Because of the externalities as indicated by the traffic matrix, agents
may have an incentive to share the connection cost of other agents.

3. Consider any kind of business (or social) relationship where the particular
network structure determines the value for those involved. For example
a relationship, which forms a network with the shape of a star, i.e., one
agent is the center and the other, say n, agents are connected to the center
by their own link. Assume that each of the n agents i obtain the utility
u from a direct link to the center and δu from an indirect link to another
agent j via the center where δ ∈ [0, 1]. Let the value of the network be
the sum of utilities of all agents involved. Hence, the increase in network
value from adding a new link to the source of the star is (2nδ + 1)u – the
new agent gets utility u from the direct link to the center and nδu from all
the indirect links to the original n agents, and the original n agents all get
utility δu from the indirect link to the additional agent in the network.
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Assume that the cost of adding such a link is c. If (2nδ + 1)u > c it is
socially optimal to include the new agent in the existing network. However,
if c > u and the new agent has to cover all the costs of establishing the link
to the center alone, he will not join the network voluntarily resulting in a
socially inefficient size of the network. To ensure network efficiency it may
therefore be necessary to reallocate costs and/or benefits in the network.
We shall examine how allocation rules influence network formation and
efficiency.

5.2 Modeling Networks as Graphs

Let N ⊂ N = {1, 2, . . .} be a set of agents where |N | = n. A network (or
graph) g is a list of unordered pairs of agents i, j ∈ N . Let gN be the set of
all pairs of agents in N and denote by G = {g|g ⊂ gN} the set of all possible
graphs on N . In particular, let g|S = {ij|ij ∈ g, i ∈ S, j ∈ S} be the subgraph
between agents (or nodes) in S ⊂ N . Moreover, for notational convenience
we write g + ij (g− ij) for the graph g adding (subtracting) the link between
i and j. In some graphs we say that there is a source (or root) denoted by
agent 0. Let N0 = N ∪ 0.

Two agents i and j are connected in g if there is a path i1i2, i2i3, . . . , ih−1ih
such that ikik+1 ∈ g for 1 ≤ k ≤ h− 1 where i = i1 and j = ih. A graph g is
said to be connected if i and j are connected in g for all i, j ∈ N. The graph
gN is said to be complete. A path is called a cycle if it starts and ends with
the same agent, e.g., if i1i2, i2i3, . . . , ih−1ih, ihi1.

Let H(g) = {i|∃j : ij ∈ g}. The graph g′ ⊂ g is a component of g, if for all
i ∈ H(g′) and j ∈ H(g′), i �= j, there exists a path in g′ connecting i and j,
and for any i ∈ H(g′) and j ∈ H(g), ij ∈ g implies that ij ∈ g′.

Examples of graphs with a source, that will often be referred to, are: a
chain where the graph is a connected sequential path 0i1, i1i2, . . . , in−1in; a
star where all agents are connected to the source via their own connection
0i1, 0i2, . . . , 0in, and a tree where the graph is a path from the source with
no cycles. See Fig. 5.1.

5.3 Minimum Cost Spanning Trees

A classical example of an economic situation that may be modeled by a graph
is when a group of agents want to be connected to a common supplier (or
source) and these connections are costly – for example as in the cases of
district heating, cable-TV, computer networks using a common server, chain
stores using a common warehouse, etc. In such cases there are no obvious
network externalities and consequently the two main problems are (1) to find
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Fig. 5.1 Networks in the shape of a chain, a star and a tree
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the cheapest way to connect all interested agents, and (2) to allocate total
network costs among the agents in the network.

Consider a complete graph gN0
over N0. For each link ij ∈ gN0

, let kij > 0
be a positive cost associated with the link ij. Note, that there is n(n+1)

2 un-
ordered pairs of agents in N0 and hence as many link costs to be determined.
Since links are unordered kij = kji. Letting kii = 0 for all i ∈ N0, these link
costs define a (n+1)× (n+1) cost matrix K associated with the graph gN0

.
We may think of such costs as the costs of establishing the link, maintenance
costs or indirect costs such as congestion, etc.

A spanning tree TN0 is a tree where all agents N are connected to the source
{0} either directly or indirectly. There are (n + 1)n−1 such spanning trees. A
minimum cost spanning tree TN0 is a spanning tree where the total link cost∑

ij∈TN0
kij is minimized over all possible spanning trees. In other words, a

minimum cost spanning tree indicates how all agents can be connected to
the source in the least costly way. Note, that there may be more than one
minimum cost spanning tree for a given complete graph. Since the graph of
TN0 does not contain cycles there is a unique path connecting a given agent
i to the source.

Remark 5.1. Algorithms for finding minimum cost spanning trees in a given
graph with cost matrix K are provided in Kruskal (1956) and Prim (1957).
Using the Kruskal algorithm, links are ordered according to non-decreasing
costs and considered one by one; a link is rejected if generates a cycle with
those already accepted, otherwise it is accepted and added. There will be n
such steps in the algorithm. Using the Prim algorithm a link is established
with lowest cost either directly to the source or to the subset of agents already
linked to the source, directly or indirectly. In this way, select an agent with
the lowest link cost to the source; then among the remaining agents select an
agent with the lowest link cost either to the source or to the agent already
connected to the source, etc. Again there will be n such steps in the algorithm.

�
For a given set of agents N and a given link cost matrix K the total

link cost of the associated minimum cost spanning tree(s) is
∑

ij∈TN0
kij .

This (total) cost can be allocated among the agents using several different
approaches, for example, those considered in Claus and Kleitman (1973).

Clearly, we may use standard rules such as “sharing the total cost equally
among all agents” or “sharing the total cost in proportion to stand-alone
costs” (that is, the costs of connecting each individual agent to the source)
or “marginal costs” (that is the difference between the costs of connecting
agents N and agents N \ i to the source for each i). Basically, these rule have
been treated in Chap. 2 and do not take the specific structure of the graph
TN0 into account.

Taking the specific structure of the minimum cost spanning tree into con-
sideration we can further use the incremental or the serial principle (see
Chap. 2) directly, as discussed in Sect. 5.3.1.



130 5 Sharing in Networks

However, since a realisation of the efficient solution in terms of a mini-
mum cost spanning tree graph requires that this solution is sustained by the
associated cost allocation, it seems quite natural to utilize the framework of
Chap. 3, as suggested in Bird (1976). A complete graph gN0

, with its asso-
ciated link cost matrix K, can be represented as a cost allocation problem
(N, cT ) where N is the set of agents and cT is a cost function defined by

cT (S) =
∑

ij∈TS0

kij ,

for all S ⊆ N , related to minimum cost spanning trees {TS0}S⊆N of the
(sub)graphs g|S0 . Note, that even though there may be more than one mini-
mum cost spanning tree related to a given subgraph, the cost function cT is
uniquely determined for a given complete graph gN0

and its associated link
cost matrix.

Given a (minimum cost spanning tree) cost allocation problem (N, cT ),
the various cost allocation rules discussed in Chap. 3 can all be applied. In
particular, core selection rules become important since satisfying the stand-
alone cost principle seems crucial for sustaining the solution indicated by the
minimum cost spanning tree.

Example 5.1. Consider the special case where the minimum cost spanning
tree is a chain (as in the airport problem mentioned in Chap. 3), i.e.,

TN0 = {0i1, i1i2, . . . , in−1in}.

The related cost allocation problem has a simple structure where, for all
S ⊆ N, we have

cT (S) =
j∗(S)∑

j=1

kj−1j = k0j∗(S),

with j∗(S) = max{j|ij−1ij ∈ TS0}. Since, for any S,H ⊆ N, that cT (S ∩
H) ≤ min{cT (S), cT (H)} and cT (S ∪ H) = max{cT (S), cT (H)} the induced
cost allocation problem (N, cT ) is concave. Hence, the core is non-empty: for
instance, in 3-agent chains the core is the convex hull of cost allocations

(0, 0, k0,3), (0, k0,2, k2,3),

(k0,1, 0, k1,2 + k2,3) and (k0,1, k1,2, k2,3).

Note that the incremental cost vector (k0,1, k1,2, k2,3) is an extreme point in
the core.

Generally, such standard fixed tree networks where all agents are linked
to the source in some predefined tree structure (e.g., as the chain mentioned
above), represent a special case of the minimum cost spanning tree model.
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It can be shown that the associated cost allocation problem (N, cT ) is concave
and hence allocations always exists for which the stand-alone cost principle
is satisfied. Characterizations of the core as well as weighted versions of the
Lorenz-allocation and the Shapley value related to standard fixed tree net-
works can be found in Koster et al. (2001). �

Denote by M the set of all cost allocation problems (N, cT ) arising from
minimum cost spanning trees of gN0

(varying the link cost matrix K). As
indicated by Example 5.1 cost allocation problems (N, cT ) ∈ M have non-
empty core as it shall presently be demonstrated.

5.3.1 Cost Allocation for Specific Spanning Trees

Following the spirit of the incremental principle, a straightforward way to
allocate costs in a specific minimum cost spanning tree TN0 is to charge each
agent i ∈ N the cost of the link incident upon i on the path from the source
to i in the graph TN0 , as proposed in Bird (1976). Let

0i1, i1i2, . . . , ih−1ih

be the (unique) path in TN0 that connects agent ih to the source making the
cost share of agent ih given by the Bird-allocation

xB
ih

(TN0) = kih−1ih
. (5.1)

Because there may be several minimum cost spanning trees for the same com-
plete graph gN0

, and consequently several different Bird-allocations related
to the same link cost matrix K (and cost allocation problem (N, cT )), this
type of cost allocation does not constitute a cost allocation rule (selecting
a unique allocation for a given link cost matrix and thereby cost allocation
problem) as demonstrated by the following example.

Example 5.2. Consider spanning trees TN0 for a complete graph gN0
with

N0 = {0, a, b, c} and associated link costs given by {k0a = 2, k0b = 5, k0c = 2,
kab = 1, kbc = 2, kac = 5}. In this case there are three minimum cost spanning
trees T = {0a, ab, bc}, T ′ = {0c, cb, ba} and T ′′ = {0a, 0c, ab} each with a
total link cost of 5. The related cost allocation problem (N, cT ) is given by

cT (a) = 2, cT (b) = 5, cT (c) = 2,

cT (a, b) = 3, cT (a, c) = cT (b, c) = 4,

cT (a, b, c) = 5.
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Note that (N, cT ) is balanced but not concave. Now, using the Bird-
allocation with respect to T and T ′′ we get cost shares xB(T ) = xB(T ′′) =
(2, 1, 2) while the Bird-allocation with respect to T ′ is given by xB(T ′) =
(1, 2, 2). Incidently, the core of (N, cT ) is the convex hull of the two extreme
points as given by the Bird-allocations. �

It turns out that all Bird-allocations are core allocations:

Proposition 5.1 (Bird 1976; Granot and Huberman 1981). Let
(N, cT ) ∈ M be a (minimum cost spanning tree) cost allocation problem then
the related Bird-allocation(s) xB satisfy the stand-alone cost principle, i.e.,
xB ∈ core(N, cT ).

Proof. Let xB be a Bird-allocation related to (N, cT ) and consider an arbi-
trary coalition S ⊆ N . Construct a spanning tree TN0 as TS0 adding the links
from all i ∈ N \ S to members in S as defined by TN0 . Thus,

∑

ij∈TN0

kij = cT (S) +
∑

i∈N\S

xB
i ≥

∑

ij∈TN0

kij = cT (N)

⇒ cT (S) ≥
∑

i∈S

xB
i .

��
Consequently the core of a (minimum cost spanning tree) allocation prob-

lem is always non-empty. Note, that we may define a Bird cost allocation
rule as a convex combination of all Bird-allocations related to a given link
cost matrix. By Proposition 5.1, this rule is a core-selection since the core is
a convex set.

Following the spirit of the serial principle, a straightforward way to allocate
costs in a specific minimum cost spanning tree TN0 is to charge each agent
i ∈ N an equal share (among “active” agents in the particular tree involving
i) of all link costs prior to i on the particular path connecting i to the source
(called “Allocation by Actual Cost” in Claus and Kleitman 1973 and the
“Equal Link Split Downstream” rule in Herzog et al. 1997).

This is simple if TN0 is a chain. Letting

0i1, i1i2, . . . , ih−1ih

be the path that connects agent ih to the source, the cost share associated
with the serial principle of agent ih is given by

xS
ih

(TN0) =
h−1∑

j=0

1
n − j

kijij+1 . (5.2)

In the general case where agent ih is part of a tree we need to keep track
of the number of agents “downstream” in the tree from every node that is
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passed on the path from the source to ih. Let d(iz) denote the number of
agents (nodes) “downstream” in the (sub)tree with source iz. Then, letting
0i1, i1i2, . . . , ih−1ih be the path that connects agent ih to the source, the cost
share associated with the serial principle of agent ih is given by

xS
ih

(TN0) =
h−1∑

j=0

1
d(ij)

kijij+1 . (5.3)

Because there may be several minimum cost spanning trees for the same
graph TN0 , there may also be several different serial allocations related to
the same link cost matrix K (and cost allocation problem (N, cT )) as demon-
strated by the example below.

Example 5.2 (continued). Recall the situation in Example 5.2 with a graph
gN0

where N0 = {0, a, b, c} and the associated link costs are given by
{k0a = 2, k0b = 5, k0c = 2, kab = 1, kbc = 2, kac = 5}. In this case there are
three minimum cost spanning trees T = {0a, ab, bc}, T ′ = {0c, cb, ba} and
T ′′ = {0a, 0c, ab} each with a total link cost of 5. Consider first (the chain)
T : Using the serial principle results in the following cost shares,

xS
a (T ) = 1/3k0a = 0.67,

xS
b (T ) = 1/3k0a + 1/2kab = 0.67 + 0.5 = 1.17,

xS
c (T ) = 1/3k0a + 1/2kab + kbc = 0.67 + 0.5 + 2 = 3.17.

Likewise, considering (the chain) T ′ we get,

xS
a (T ) = 1/3k0c + 1/2kcb + kba = 0.67 + 1 + 1 = 2.67,

xS
b (T ) = 1/3k0c + 1/2kcb = 0.67 + 1 = 1.67,

xS
c (T ) = 1/3k0c = 0.67.

Finally, considering (the tree) T ′′ we get,

xS
a (T ) = 1/2k0a = 1,

xS
b (T ) = 1/2k0a + kab = 1 + 1 = 2,

xS
c (T ) = k0c = 2.

Note, that contrary to the Bird-allocations, two of the serial allocations,
xS(T ) = (0.67, 1.17, 3.17) and xS(T ′) = (2.67, 1.67, 0.67), do not satisfy the
stand-alone cost principle since xS

c (T ) > cT (c) and xS
b (T ) + xS

c (T ) > cT (b, c)
as well as xS

a (T ′) > cT ′
(a) and xS

a (T ′) + xS
b (T ′) > cT ′

(a, b). �
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As demonstrated by the example above, using the serial principle with
respect to minimum cost spanning trees related to arbitrary connected graphs
does not necessarily result in core allocations of the related cost allocation
problem. However, notice that if we consider a standard fixed tree network
(and not a complete graph as above), i.e., if g = TN0 , then using the serial
allocation, cost shares do not exceed the stand alone cost for any coalition
and consequently xS(TN0) ∈ core(N, cT ).

5.3.2 Characteristics of Cost Allocation Rules

As mentioned, it seems natural to consider cost sharing in a minimum cost
spanning tree as a cost allocation problem (N, cT ) ∈ M, which is uniquely
determined by the link cost matrix K. Hence, the cost allocation rules of
Chap. 3 all become relevant as candidates for solutions to the allocation prob-
lem and further selection of specific rules must rely on the desirability of the
characteristics of these rules under given circumstances. Even though there
are axiomatic characterizations of the individual rules in Chap. 3 this section
will provide further characteristics, which are associated more closely with
the specific structure of the spanning tree graphs.

Fix N0 and let K(N0) denote the set of possible link cost matrices. Since,
for every link cost matrix K ∈ K(N0), there is a uniquely determined cost
allocation problem (N, cT ) ∈ M (and for simplicity of notation) we shall
consider cost sharing rules φ as functions of the link cost matrix K – and
not, as in Chap. 3, as functions of the associated cost allocation problem
(N, cT ). Hence, let φ : K(N0) → Rn, where

∑

i∈N

φi(K) =
∑

ij∈TN0

kij .

When there are no externalities, it can be argued that no agent should
subsidize other agents in case the cheapest way to connect all agents to the
source is via individual connections (corresponding to the case where the
minimum cost spanning tree is a star and cT (S) =

∑
i∈S cT (i) =

∑
i∈S k0i

for all S ⊆ N). Formally:

• No Cross Subsidization: If the minimum cost spanning tree, TN0 , is star
then φi(K) = k0i for all i ∈ N .

Notice, that the four allocation rules treated in Chap. 3 all satisfy No Cross
Subsidization as do the Bird and Serial allocations.

Moreover, when we consider minimum cost spanning trees that consists of
“separate” trees (each connected to the source) the same line of argument
would suggest that changing the link cost between any two agents associated
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with the same tree should not alter that cost shares of agents associated with
other trees. To be more precise we need some additional definitions.

A link ij is called relevant if kij ≤ max{k0i, k0j}. A path from i to j is
called relevant if every link on the path is relevant. Hence, for a given link cost
matrix K, agents can be partitioned into groups N = {N1, . . . , Np} where
members of a given group are connected by some relevant path while there
are no relevant paths between members of different groups:

• Group Independence: Suppose that some partitioning

N = {N1, . . . , Np}

occurs for cost matrix K. Consider another cost matrix K ′ where k′
nm =

knm for all {n,m} �= {i, j} where i, j ∈ Nl. Then φk(K) = φk(K ′) for all
k ∈ Nt, and for all t �= l.

Matrices K and K ′ are identical except (perhaps) for the link cost kij ,
and note that when the link cost kij , for i, j ∈ Nl, changes then perhaps
the group Nl is further partitioned, but the remaining groups are unchanged.
In terms of the allocation problem the change in link cost may give rise to
changes in the cost of coalitions S ⊇ {i, j}.

Considering the agents i, j ∈ N for which the link cost is changed, it can
also be argued that these agents ought to be affected in the same way, i.e.,
either they gain or lose the same amount. Formally:

• Equal Treatment: Consider two link cost matrices K and K ′ where k′
nm =

knm for all {n,m} �= {i, j}. Then φi(K ′) − φi(K) = φj(K ′) − φj(K).

In fact, these three conditions uniquely characterizes the Shapley value
φSh.

Theorem 5.1. (Kar 2002). A cost allocation rule φ satisfies No Cross Sub-
sidization, Group Independence and Equal Treatment if and only if it is the
Shapley value φSh.

Proof. (sketch): Following the argument in Kar (2002) we demonstrate that
there is a unique rule, which satisfies all three conditions and this will be
done by induction on the number of relevant links.

If there are no relevant links the minimum cost spanning tree is a star
and by No Cross Subsidization there is a unique solution φi = k0i for all i.
Assume that there is a unique solution to all matrices K with at most (k−1)
relevant links and consider a matrix Kk with k relevant links.

By contradiction, assume that there exists a solution γ(Kk) �= φ(Kk).
Moreover, assume that going from link cost matrix Kk−1 to matrix Kk only
the link {n,m} is made relevant with n,m ∈ Nt of the related partition with
respect to Kk.
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By Group Independence φi(Kk) = γi(Kk) for all i ∈ Nl where l �= t.
For a relevant link in Nt we have by Equal Treatment and the induction
hypothesis that

φm(Kk) − φn(Kk) = φm(Kk−1) − φn(Kk−1) = γm(Kk−1) − γn(Kk−1)

= γm(Kk) − γn(Kk).

Now, since there are relevant links between all agents in Nt we have that

φi(Kk) − γi(Kk) = φj(Kk) − γj(Kk) for any i, j ∈ Nt.

Since
∑

i∈N (φi(Kk) − γi(Kk)) = 0 and φi(Kk) = γi(Kk) for all i ∈ Nl

where l �= t we get that
∑

i∈Nt
(φi(Kk) − γi(Kk)) = 0, and since

φi(Kk) − γi(Kk) = φj(Kk) − γj(Kk) for any i, j ∈ Nt,

we have in particular that φi(Kk) = γi(Kk) for all i ∈ Nt and consequently
that φ(Kk) = γ(Kk), providing the contradiction. It can further be shown
that the Shapley value satisfies all three conditions. ��

Remark 5.2. Somewhat related characterizations of the Shapley value are
found in Myerson (1977) and Jackson and Wolinsky (1996) in the general
context of network games. �

Another important property satisfied by the Shapley value is monotonic-
ity with respect to changes in the cost structure, as discussed in Chap. 3
(Sect. 3.5). In the present model, monotonicity can be formulated as follows:

• Cost Monotonicity: Consider two link cost matrices K and K ′ where kij >
k′

ij for i, j ∈ N0 and k′
nm = knm for all {n,m} �= {i, j}. Then φm(K) ≥

φm(K ′) for all m ∈ N ∩ {i, j}.
As such Cost Monotonicity states that when the link cost between any

two nodes in N0 increases so does the cost share of the agents involved.

Example 5.3. Consider first a network with two agents N = {a, b} and link
costs given by k0a = 3, k0b = 2 and kab = 1. Clearly, the minimum cost
spanning tree is given by T = {0b, ba} with a total link cost of 3. Since there
is a unique minimum cost spanning tree in this case there is a unique Bird
allocation, i.e., xB(T ) = (1, 2). Now, assume that the link cost k0b increases
to 4. Now, the unique minimum cost spanning tree becomes T ′ = {0a, ab}
with a total link cost of 4. The unique Bird allocation is given by xB(T ′) =
(3, 1). Hence, although the link cost k0b increases, agent b is now paying less
and consequently the Bird allocation violates Cost Monotonicity.

Allocating costs according to the serial principle (using (5.3)) also violates
Cost Monotonicity: Consider a network with five agents N = {a, b, c, d, e}
and link costs given by k0a = kab = k0c = 2, kcd = kde = 0, keb = 2.1 and
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k·,· = ∞ otherwise. Consequently there is a unique minimum cost spanning
tree T = {0a, ab, 0c, cd, de} with total link costs 6. Now, according to the
serial principle these costs are allocated as xS(T ) = (1, 3, 0.67, 0.67, 0.67).
Assume, then that the link cost kab is increased to ∞. This changes the
minimum cost spanning tree, which now becomes

T ′ = {0a, 0c, cd, de, eb}

with total link cost 6.1. According to the serial principle these costs are
allocated as xS(T ′) = (2, 2.6, 0.5, 0.5, 0.5) violating Cost Monotonicity for
agent b. �

Even though the Shapley value satisfies a series of desirable properties it
may violate the stand-alone cost principle as discussed in Chap. 3 – also in
case of minimum cost spanning trees. In the general case of balanced cost
allocation problems there is a trade-off between satisfying the stand-alone
cost principle and satisfying Cost Monotonicity as shown in Theorem 3.2.
However, since the minimum cost spanning tree allocation problems consti-
tute a strict subset of the balanced allocation problems it is actually possible
to find allocation rules that comply with both properties as shown in Dutta
and Kar (2004).

For simplicity we restrict attention to the domain of minimum cost span-
ning tree allocations problems where there is a unique minimum cost spanning
tree and no two links have the same link cost (for generalizations, see Dutta
and Kar). On this domain we use the following algorithm to define an allo-
cation rule φDK :

Let A0 = {0}, g0 = ∅ and t0 = 0.

Step 1. Choose the pair a1b1 = argminij∈A0×A0
c
kij , where Ac = N0 \ A.

Define t1 = max{t0, ka1b1}, A1 = A0 ∪ {b1} and g1 = g0 ∪ {a1, b1}.

Step h. Choose the pair ahbh = argminij∈Ah−1×Ah−1
c

kij , and define th =
max{th−1, kahbh}, Ah = Ah−1 ∪ {bh} and gh = gh−1 ∪ {ah, bh} and let
φDK

bh−1 = min{th−1, kahbh}.

The algorithm stops at step n with φDK
bn = tn.

In Dutta and Kar (2004) it is proved that φDK , as defined above, satisfies
Cost Monotonicity as well as the stand-alone cost principle.

Example 5.4. Consider the simple case with three agents where TN0 is a
chain, i.e., TN0 = {0a, ab, bc}. Using the algorithm to determine φDK we get:

Step 1. a1b1 = 0a making t1 = k0a, A1 = {0, a} and g1 = {0a}.
Step 2. a2b2 = ab making t2 = max{k0a, kab}, A2 = {0, a, b}, g2 = {0a, ab}

and φDK
a = φDK

b1 = min{k0a, kab}.
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Step 3. a3b3 = bc making t3 = max{k0a, kab, kbc}, A3 = {0, a, b, c}, g3 =
{0a, ab, bc} and φDK

b = φDK
b2 = min{max{k0a, kab}, kbc}, and φDK

c = φDK
b3 =

max{k0a, kab, kbc}.
In the present case, this rule clearly satisfies the stand-alone cost principle

and differs from the Bird allocation (e.g., when kab < k0a). �
Although the allocation rule φDK may seem a bit arbitrary at first sight,

Dutta and Kar further demonstrate that this allocation rule can be character-
ized by a consistency property of the Hart–Mas-Colell type (like the Shapley
value, see Sect. 3.6.3) and a weak monotonicity property, which loosely speak-
ing states that no agent is willing to pay more in order to include an agent
in the network that will have no follower in the associated minimum cost
spanning tree graph.

Remark 5.3. Population Monotonicity is another monotonicity property dis-
cussed in Chap. 3, Sect. 3.5. This property is not satisfied by Bird allocations.
However, as demonstrated in Norde et al. (2004), there exists population
monotonic allocation rules for minimum cost spanning tree allocation prob-
lems and they provide a specific algorithm to find such a rule. See also
Bergantinos and Vidal-Puga (2007). �

Remark 5.4. Other approaches to the definition of allocation rules for min-
imum cost spanning trees can be taken. For instance, a minimum cost
spanning tree problem is called irreducible if reducing any link cost reduces
the total cost of connecting all agents to the source: Following Bird (1976)
let (N,K) be the original problem then its irreducible form (N, K̃) is de-
fined as k̃ij = kij for all links ij ∈ TN0 and for ij �∈ TN0 let k̃ij = max kzl

among the links zl ∈ TN0 forming a cycle when adding the link ij to TN0 .
In Bergantinos and Vidal-Puga (2007) it is suggested to use the Shapley
value of the irreducible form when allocating costs of the original minimum
cost spanning tree problem. For problems on irreducible form the Shapley
value coincides with the average of all incremental (Bird) allocations. It is
demonstrated that such a rule satisfies a series of relevant properties includ-
ing being cost and population monotonic and since it can be shown that the
cost allocation problem (N, c̃T ) associated with the irreducible form (N, K̃)
of (N,K) is concave then the Shapley value on (N, K̃) is also a core selection
(satisfying the Stand-alone Test). To get an idea of the approach consider
the Example 5.5.

In Hougaard et al. (2008) it is noted that allocating costs using the Shapley
value on the allocation problems’ irreducible form has an alternative inter-
pretation: Pick an unbiased random ordering π of the agents, and construct a
spanning tree Tπ as follows. Start by connecting the first agent to the source
and charging him the corresponding cost; connect next the second agent to
either the source or the first agent, whichever is cheaper, and charge him
that cost; . . . ; charge to the t-th agent the cost of the cheapest link to one of
its predecessors or the source; and so on (in fact, this is similar to the Prim
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algorithm, with the crucial difference that in the latter, the t-th agent is not
selected at random: instead it is the cheapest way to connect with the t − 1
first agents and the source). Formally, let ΠN be the set of all orders of N .
Given π ∈ ΠN , let P(i, π) denote the union of the source and the set of agents
prior to agent i in the order π, i.e., P(i, π) = {0} ∪ {j ∈ N |π(j) < π(i)}.
Now, for each agent i ∈ N, cost shares are found as

1
n!

∑

π∈ΠN

min
j∈P(i,π)

{k̃ij}.

Incidently, note that this way of computing the cost share only relies on
information concerning agent i’s own link costs (and not the cost of links
between other agents). Thus, such a rule can be viewed as a decentralized way
to share costs in the sense that every agent can compute their own cost share
without knowledge of the other agents link costs. In Hougaard et al. (2008)
this gives rise to the definition of a so-called decentralized canonical pricing
rule generalized to arbitrary cost matrices (and not just those on irreducible
form). It is called a pricing rule since outside the domain of irreducible cost
matrices it may violate budget-balance by resulting in a surplus charge. �

Example 5.5. Let N = {1, 2} and let link cost matrix K associated with the
graph gN0 be given by the link costs k01 = k02 = 10 and k12 = 2. Clearly, the
cost structure is symmetric and there are two minimum cost spanning trees
given by T = {(0, 1), (1, 2)} and T ′ = {(0, 2), (2, 1)} respectively with a total
cost of 12. Bird allocations are given by xB(T ) = (10, 2) and xB(T ′) = (2, 10)
while using the serial rule gives xS(T ) = (5, 7) and xS(T ′) = (7, 5). The four
rules of Chap. 3 related to the cost allocation problem (N, cT ) all coincide
and result in the allocation xSh = xNuc = xL = xτ = (6, 6). It seems difficult
to argue for other solutions than the equal split (6, 6), which indeed is also
the result of using the average of both the incremental and serial principle
(the Bird and serial allocations).

Now, assume that the link cost matrix is changed to K ′ where k′
02 =

k02 + x, x > 0 and k′
ij = kij for {i, j} �= {0, 2}. In this case, there is only

one minimum cost spanning tree T = {(0, 1), (1, 2)} with Bird and serial
allocation as xB(T ) = (10, 2) and xS(T ) = (5, 7) respectively, while xSh =
xNuc = xL = xτ = (6 − x/2, 6 + x/2). Hence allocations relating directly to
the specific minimum cost spanning tree are unchanged, while the allocation
rules related to the cost allocation problem (N, cT ) all change according to
the size of x (in particular note that the cost share of agent 1 is negative
for x > 12). On the one hand, it can be argued that since the minimum cost
spanning tree has not been changed neither should the resulting allocation (as
when using, e.g., the Bird allocation or average hereof). On the other hand,
it can also be argued that since the underlying cost structure of the problem
has changed so should the resulting allocation of costs (as when using, e.g.,
the Shapley value).
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Clearly, the problem associated with link cost matrix K is the irreducible
form of the problems associated with link cost matrix K ′. Hence, using an
allocation rule on the former, which is defined as the average of Bird alloca-
tions related to the irreducible form yields the allocation (6, 6) for any value
of x > 0, as suggested in Bergantinos and Vidal-Puga (2007). An argument in
favor of such an allocation could be that agent 2, for whom cost are increased
as x increases, should not pay less (when x > 0) than in the irreducible form
(where x = 0). It can be shown in general that the average of Bird alloca-
tions related to the irreducible form coincides with the Shapley value of the
allocation problem associated with the irreducible form.

Arguments against such a way to allocate costs are presented in Bogomol-
naia and Moulin (2008): Consider for example a case with ten agents where
k0i = 10 for all i; kij = 1 for all i, j ≥ 2 and k1i = 0 for all i ≥ 2. Hence,
any minimum cost spanning tree will form a star with agent 1 in the middle
and some arbitrary agent connected to the source. Note, that the presence
of agent 1 reduces the total cost for the remaining agents from 18 to 10 so it
seems natural that agent 1 should be charged less than the other agents, yet
using the Shapley value on the irreducible form, the total cost of 10 will be
split equally among all ten agents. �

5.4 Demand-Based Cost Allocation

Often the formation of networks is closely connected with the presence of
externalities, for instance, in case of telecommunication networks. Here, it
is no longer obvious that No Cross Subsidization ought to be satisfied since
agents benefit from the number of other agents in the network (at least by
the number of agents with whom they actually communicate). Thus, the “no
externality” assumption underlying the minimum cost spanning tree model
is limiting the scope of relevant allocation rules.

Typically, we have no knowledge of the individual agents preferences but
the amount of communication (traffic) between them is an available proxy.
This proxy can be used to influence the way that connection costs are going to
be shared between the agents in the network. Due to the externalities involved
it may be in the interest of some agents to share the connection costs of other
agents and it is not obvious how this cost sharing must take place.

The same problem is encountered when pricing the traffic itself. For
example, think of the Internet: loosely speaking, the relevant agents here
consist of two types; consumers and websites. It can be argued that the con-
sumer has to pay for traffic between consumer and website since it is the
consumer who requests the traffic and benefits from the information that is
obtained from the website. However, it can also be argued that the website
has to pay for the traffic since the website is the actual sender of the traffic
and benefits from the agent’s attention to the site.
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Following Henriet and Moulin (1996), this section will present a framework
for sharing connection costs based on actual traffic and demonstrate that al-
location rules, which combine the idea that agents pay their own connection
costs with the idea that agents pay for their communication parters connec-
tion cost, can be characterized by a set of intuitively relevant properties.

Assume that agents N = {1, . . . , n} are connected to a source (a central
switching machine) in some kind of network, and that only the costs of con-
necting the agents to the network (in terms of local wires, switching cards,
etc.) are relevant, i.e., there are no costs connected with traffic in the net-
work. Let the individual costs of connection be denoted ci, i = 1, . . . , n and
let c = (c1, . . . , cn) be the cost profile of the network. It is easiest to imagine
the network as a star, but ci can be seen as the costs of connecting i to any
kind of existing network. The amount of traffic between two agents i and j
in the network is denoted xij ≥ 0 and may represent, e.g., number of hours
of communication between i and j per month (typically available from the
network operator). Let X denote the n×n traffic matrix where by construc-
tion xij = xji and xii = 0. Assume that all agents communicate with at least
one of the other agents. The pair (c,X) will be called a traffic-based cost
allocation problem.

Given a traffic-based cost allocation problem (c,X) a (traffic-based) cost
allocation rule φ assigns (non-negative) cost shares φi(c,X) to every agent
i = 1, . . . , n, under budget-balance, i.e., where

∑n
i=1 φi(c,X) =

∑n
i=1 ci.

Ignoring the externalities involved a straightforward rule would assign to
each agent i his individual cost of connection ci (as indeed would all rules
treated in Sect. 5.3, considering a star-shaped minimum cost spanning tree).
Denote by

φPC
i (c,X) = ci (5.4)

for all i = 1, . . . , n, the Private Cost rule.
An equally straightforward approach, which takes the amount of traffic in

to consideration is to share the total network cost C =
∑n

i=1 ci in proportion
to traffic. Denote by

φDP
i (c,X) =

∑
j xij

∑
i

∑
j xij

C (5.5)

for all i = 1, . . . , n, the Demand Proportional rule.
However, the opposite extreme to the Private Cost rule is a rule that

allows for full traffic based cross-subsidization between agents in the sense
that agent i pays a weighted sum of the connection costs of the agents with
whom i communicates and where the weights are determined in proportion
to the amount of traffic. Denote by

φEC
i (c,X) =

∑

j

xij∑
i xij

cj (5.6)

for all i = 1, . . . , n, the External Cost rule.
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Note, that using the External Cost rule, cross-subsidization may be sig-
nificant from agents with low connecting costs (e.g., agents located in urban
areas) to agents with high connecting costs (e.g., agents located in rural
areas).

Example 5.6. Consider the 3-agent case and assume that agents 1 and 2 have
relatively low connection costs (c1 = c2 = 1) whereas agent 3 has relatively
high connection costs (c3 = 10). Assume furthermore that agents 1 and 2
almost never communicate with agent 3 (x13 = x23 = 1) whereas the traffic
is significant between themselves (x12 = x21 = 20). Now, using the External
cost rule, agents 1 and 2 are forced to share the high connection cost of
agent 3, even though the externalities from having agent 3 included in the
network are negligible (φEC

1 (c,X) = φEC
2 (c,X) = 5.95). Agent 3, on the

other hand, joins the network almost for free (φEC
3 (c,X) = 0.095). �

Thus, it seems that some kind of combination between the Private Cost
rule and the External Cost rule could be more appropriate. In fact, as demon-
strated in Henriet and Moulin (1996), any convex combination of these two
rules can be characterized by the following conditions.

First, in order to sustain the network structure and avoid “double ca-
bling” it must not be beneficial for any coalition to form their own private
network (within the network structure) to provide traffic between themselves.
In particular:

• Sustainability: Consider two traffic matrices X and X ′ where xij �= x′
ij

and xnm = x′
nm otherwise. Then for all coalitions S ⊇ {i, j},

∑

l∈S

φl(c,X) −
∑

l∈S

φl(c,X ′) ≤ ci + cj .

Example 5.7. Consider the example above where c1 = c2 = 1 and c3 = 10
with traffic matrix x12 = x21 = 20, x13 = x31 = x23 = x32 = 1. Using the
Demand Proportional rule to the share total costs C = 12, we get cost shares,

φDP
1 (c,X) = φDP

2 (c,X) =
21
44

12 = 5.73, φDP
3 (c,X) =

2
44

12 = 0.54.

Clearly, agents 1 and 2 may find this situation unfair so assume that they
form their own network at costs c1 + c2 = 2 to provide for their own traffic
and join the network with agent 3, but now with traffic x′

12 = x′
21 = 0. Using

φDP with respect to the new traffic matrix X ′ we now get,

φDP
1 (c,X) = φDP

2 (c,X) =
1
4
12 = 3, φDP

3 (c,X) =
2
4
12 = 6.

Thus, the coalition consisting of agents 1 and 2 has gained 11.46 − 6 = 5.46
by forming their own network, which is more than the cost of their own
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connection c1 +c2 = 2. Consequently the Demand Proportional rule does not
satisfy Sustainability.

Now, considering the External Cost rule, this manipulation by agent 1 and
2 would only lead to a cost saving of 1.90, which is smaller then the cost of
connection (which is 2) so it does not pay to form their own network. �

It is obvious that the Private Cost rule satisfies Sustainability in general.
So consider the External Cost rule: By changing xij with Δ > 0 all agents
except for i and j will be better off, and since the total net change in costs
is zero, i and j will be worse off. The question therefore is whether i and j
can decrease xij (Δ < 0) and thereby push more costs than ci + cj to the
complement. Now, the total cost change of the complement is

(
xi

N\{i,j}
xi

N

−
xi

N\{i,j}
Δ + xi

N

)ci + (
xj

N\{i,j}

xj
N

−
xj

N\{i,j}

Δ + xj
N

)cj ,

(where xs
S =

∑
k∈S xsk), which is smaller than ci + cj for Δ < 0 and conse-

quently the External Cost rule satisfies Sustainability in general.
In the same spirit as Sustainability it can be argued that it should not be

profitable to a coalition containing agents i and j to form their own connection
(at costs ci +cj) and transfer traffic between i and a third agent k outside the
coalition via j (which is possible in a communications network even without
j’s consent):

• No Transit: Consider a given traffic matrix X and let X ′ be constructed
from X by transferring an amount of traffic γ ≥ 0 from {i, k} via j, i.e.,
x′

ik = xik − γ, x′
ij = xij + γ and x′

jk = xjk + γ. Then for all S ⊇ {i, j}
and k �∈ S, ∑

l∈S

φl(c,X) −
∑

l∈S

φl(c,X ′) ≤ ci + cj .

No Transit is satisfied by both the Private Cost and the External Cost
rule, but not the Demand Proportional rule.

Furthermore, we have standard requirements of Additivity in cost and
Unit Invariance in the measurement of traffic (satisfied by all three rules,
φPC , φEC and φDP ):

• Additivity: Consider two different cost profiles c and c′, then for all traffic
matrices X,

φ(c + c′,X) = φ(c,X) + φ(c′,X).

• Unit Invariance: For all α > 0 and all problems (c,X),

φ(c, αX) = φ(c,X).

It can be shown that any rule satisfying the above four requirements must
be a combination of the Private Cost and the External Cost rule. Formally,
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Theorem 5.2 (Henriet and Moulin 1996). Let |N | ≥ 4. A traffic-based
cost allocation rule φ satisfies Sustainability, No Transit, Additivity and Unit
Invariance if and only if, for each j ∈ N that there is a number, λj ∈ [0, 1],
such that

φi(c,X) = (1 − λi)ci +
∑

k �=i

λk
xik∑
i xik

ck,

for all i ∈ N.

A standard result from the theory of functional equations can be used to
show that Additivity implies linearity of the allocation rule (i.e., φi(c,X) =∑

j∈N αi
j(X)cj where αi

j ≥ 0 and
∑

i∈N αi
j(X) = 1). Now, Sustainability

and No Transit is used to give further structure on the weights αi
j . For the

complete proof, see Henriet and Moulin.

5.5 Efficient Network Structure

Now assume more generally that the particular way in which a relationship
between a given set of agents is structured influences the value of that rela-
tionship. For example, in case the structure itself influences the magnitude
of the network externality or matters for the profitability and power of the
group. So each potential network has a value and a natural question becomes
how this value is going to be allocated among the agents in the group, in
particular taking into account that the allocation rule itself may influence
the structure of the network since it influences the agents incentives to form
links with other agents.

Although the literature on this topic is relatively new it is already quite
substantial. Jackson (2008) offers a recent survey. A central theme is the
tension between stability and efficiency of networks, as briefly considered in
example (3) of the Introduction.

5.5.1 The Model

Fix a set N = {1, . . . , n} of agents. For any graph g ∈ G, let the value of g be
given by a function v : G → R (with v = 0 for the completely disconnected
graph). Let V denote the set of all such value functions. The value may, for
instance, be thought of as the total amount of traffic (communication) in the
network or as any kind of total surplus (or cost) obtained by connecting the
agents as indicated by the particular structure of the graph.

Let Z(g) be the set of components of g. A value function is said to be
component additive if v(g) =

∑
g′∈Z(g) v(g′). Note, that when v is component

additive there are no externalities between components in the network.
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A graph g ∈ G is said to be strongly efficient if it has maximal value, i.e.,
if v(g) ≥ v(g′) for all g′ ∈ G. Note, that when value is transferable between
agents this is equivalent to Pareto-optimality.

To allocate the value v among the individual agents in N we define a value
allocation rule ψ : G × V → Rn where

∑

i∈N

ψi(g, v) = v(g).

Consider a permutation π ∈ Π. Let gπ = {ij|i = π(k), j = π(l), kl ∈ g}
and let vπ(gπ) = v(g). A value allocation rule ψ is called anonymous if, for
any permutation π ∈ Π that ψπ(i)(gπ, vπ) = ψi(g, v) for all i ∈ N .

Moreover, the rule ψ is said to be component balanced if
∑

i∈H(g′) ψi(g, v) =
v(g′) for every g and g′ ∈ Z(g) and component additive value function v. In
other words, if a rule is component balanced, the value of any component (for
which there is no connection to the other agents in N) can only the shared
between agents of the component and not with any outsiders. Hence, no
component has the incentive block the network structure and form their own
separate network knowing that they can then share a larger value. Although,
at first glance this seems quite reasonable, we shall see in Theorem 5.3, that
it turns out to play a significant role in the tension between efficiency and
stability.

A graph is said to be pairwise stable if no two agents in the network both
want to add a link and if no two agents outside the network can agree on
adding their link to the network. Formally, the graph g is pairwise stable if:

1. For all ij ∈ g, ψi(g, v) ≥ ψi(g − ij, v) and ψj(g, v) ≥ ψj(g − ij, v).
2. For all ij �∈ g, if ψi(g, v) < ψi(g + ij, v) then ψj(g, v) > ψj(g + ij, v).

Note, that this notion of stability only considers deviations one link at a
time and only by 2-agent coalitions as illustrated by the example below.

Example 5.8. Let N = {1, 2, 3, 4, 5} and consider the graph g = {12, 13, 23} ⊂
gN . In order to check whether g is pairwise stable for some allocation rule
φ we first have to check whether both agent 1 and 2 are weakly better
off in g than in the graph g − {1, 2} = {13, 23}. We then have to check
whether both agents 1 and 3 are weakly better off in g than in the graph
g − {1, 3} = {12, 23}, and we then have to check whether both agents 2 and
3 are weakly better of f in g than in the graph g − {2, 3} = {12, 13}. If this
is the case, we finally have to check whether adding a link between agents
4 and 5 (i.e., considering the graph g + {4, 5} = {12, 13, 23, 45}) makes one
of these agents strictly worse off whenever the other agent is strictly better
off compared to g. If this is also the case we then conclude that g is pairwise
stable. �

Finally, note that although this model closely resembles the model from
cooperative game theory (like the model in Chap. 3) then it is in some sense
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a richer model: In a cooperative game there is a value associated with each
coalition of agents in N while in the present model there may be many
different values associated with the same coalition of agents depending on
the particular network that they are forming.

5.5.2 Stability and Efficiency

In the presence of various forms of network externalities it is easy to imagine
situations where efficient networks are not necessarily (pairwise) stable but it
turns out that it is, in fact, impossible to find an anonymous and component
balanced allocation rule that ensures efficiency and stability.

Theorem 5.3 (Jackson and Wolinsky 1996). Let |N | ≥ 3. There does
not exist an anonymous and component balanced allocation rule ψ such that
for each value function v at least one strongly efficient graph is pairwise
stable.

Proof. Following the argument in Jackson and Wolinsky we consider the
3-agent case N = {i, j, k}, where v is given such that for all i, j, k, v(ij) =
v(ij, jk, ik) = 1 and v(ij, jk) = 1 + ε. Consequently networks of the form
g = {ij, jk} are strongly efficient. By anonymity and component balance
we get that, ψi({ij}, v) = 0.5 and ψi({ij, jk, ik}, v) = ψk({ij, jk, ik}, v) =
0.33. Now, pairwise stability of the strongly efficient graph requires that
ψj({ij, jk}, v) ≥ ψj({ij}, v) = 0.5 implying that

ψi({ij, jk}, v) = ψk({ij, jk}, v) ≤ 0.25 + 0.5ε.

But this contradicts pairwise stability since (for sufficiently small ε) i and k
would both gain from forming a link (obtaining 0.33). For the cases n > 3,
assign v(g) = 0 to any g involving agents other than i, j and k. ��

There are many anonymous and component balanced allocation rules, for
instance, the Shapley (Myerson) value with respect to (g, v). Moreover, as
demonstrated in Jackson and Wolinsky, it is easy to find anonymous and
component balanced allocation rules for which there always exists a pairwise
stable graph. Hence, the tension between stability and efficiency is real in the
general case. However, efficiency and stability can be reconciled for certain
classes of value functions or if conditions on the allocation rule are relaxed.
Consider the following example.

Example 5.9. Consider 3-agent problems N = {i, j, k}, and let vij > 0 be the
value of the link ij (with vii = 0). Now, define the value function v as the
simple sum of link values in g′, i.e.,

ṽ(g′) =
∑

ij∈g′

vij .
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Clearly, only the full graph g = {ij, jk, ik} is strongly efficient. Considering
the Shapley (Myerson) value, which is anonymous and component balanced,
we get the allocation,

ψSh
i (g, ṽ) = 0.5(vij + vik)

ψSh
j (g, ṽ) = 0.5(vij + vjk)

ψSh
k (g, ṽ) = 0.5(vik + vjk)

To check whether g is pairwise stable we have to check whether ij are
better off in g′ = {ik, jk} than in g, whether ik is better off in g′′ = {ij, jk}
than in g and whether jk is better off in g′′′ = {ij, ik} than in g. Since,
ṽij = 0 in g′, ṽik = 0 in g′′ and ṽjk = 0 in g′′′ it is clear that no pair is
better off when using the Shapley (Myerson) value. In case of value function
ṽ we therefore have an example of an allocation rule (the Shapley (Myerson)
value) for which the strongly efficient graph g is pairwise stable. �

Dutta and Mutuswami (1997) reconsider the tension between efficiency
and stability. They suggest to adopt an implementation approach and define
a notion of strong stability as networks that are formed in a strong Nash
equilibrium of an associated network formation game defined as follows:

For each agent i the strategy set Si consists of the set of agents j with
whom i wants to form a link.

Each strategy vector s ∈ Πi∈NSi gives rise to a unique network g(s) where
a link between i and j forms if and only if both agents want to form this link.

The pay-offs to each agent (given s) are given by the allocation rule ψ
with respect to the network g(s).

Comparing with the notion of pairwise stability; if a network g is strongly
stable then it is also pairwise stable since pairwise stability can be seen as re-
stricting deviating coalitions to 2-agent coalitions and a deviation can consist
of severing just one existing link or forming one additional link.

Now, arguing that we should only care for anonymity for networks which
are strongly stable (as these are results of the network formation game) the
following result is obtained.

Theorem 5.4 (Dutta and Mutuswami 1997). Let |N | ≥ 3. There ex-
ists a component balanced allocation rule ψ, which is anonymous on the set
of strongly stable networks such that for every value function v (assigning
strictly positive values to all networks that are not totally disconnected) the set
of strongly stable networks is non-empty and contained in the set of strongly
efficient graphs.

For details of the proof see Dutta and Mutuswami (1997) who construct an al-
location rule (satisfying the relevant properties) that induces a strongly stable
network. Moreover, it is demonstrated that a network cannot be strongly ef-
ficient unless it is strongly stable.
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5.5.3 Allocation Rules Respecting Network Structure

Although many of the allocation rules that has been analysed so far easily
extends to the present framework as, for example, the Shapley (Myerson)
value used in Example 5.9, the richness of the network model (with values
related to all different graphs) seems to call for rules, which take the specific
underlying network structures into account. It can be demonstrated that the
Shapley (Myerson) value has problems in this respect.

Example 5.10. Consider, as in Jackson (2005), two 3-agent problems (g, v)
and (g, v̄) where v({12}) = v({23}) = v({12, 23}) = 1 and v(g) = 0 otherwise,
while v̄(g) = 1 for all non-empty graphs. As it appears, agent 2 plays a crucial
role in the problem (g, v) being the only person with whom agent 1 and 3 are
able to generate any value, while agent 2 plays no particular role in the prob-
lem (g, v̄) where all agents are symmetric. Hence, it seems that a suitable al-
location rules should treat these two problems differently. However, using the
Shapley (Myerson) value, e.g., with respect to the graph {12, 23}, we get that

ψSh({12, 23}, v) = ψSh({12, 23}, v̄) = (
1
6
,
2
3
,
1
6
).

Notice that compared to the cooperative game model used in Chap. 3, the
(grand) coalition {1, 2, 3} can be represented by four different network struc-
tures connecting the three agents, and consequently four different values, in
the present model. �

As suggested in Jackson (2005), one way to extend the allocation rules of
Chap. 3 to the present network model ensuring a certain degree of flexibility
with respect to the specific network structure, could be to represent the worth
(or cost) of each coalition as the worth of the best (cheapest) network they are
able to form. In many ways this seems a rather natural choice since coalitions
should have strong incentives to form efficient networks.

Let vMono(g) = maxg′⊂g v(g′) be the monotonic cover of v. Then for any
allocation rule φ of Chap. 3 (like the Shapley value, the Nucleolus, etc.) we
can define its related network flexible extension as

ψφ(g, v) =
v(g)

vMono(gN )
φ(vMono). (5.7)

Notice that v(g)/vMono(gN ) = 1 if g is efficient. Hence, for efficient networks
the network flexible rule is just the chosen allocation rule φ used with respect
to the monotonic cover of v. Moreover, for inefficient networks the allocation
is simply a rescaled version of the allocation for the efficient network. Clearly,
this part of the definition is somewhat ad hoc and could be made differently.
Proportionality does not seem to be the unique natural way to extend allo-
cation rules to inefficient networks.
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Example 5.10 (continued). If, for example, φ is the Shapley value the network
flexible allocation rule ψφSh

clearly differs from the Shapley (Myerson) value
used in Example 5.10. Consider the value functions v and v̄ of Example 5.10
again. Using the network flexible allocation rule with respect to the Shapley
value we get,

ψφSh

({12, 23}, v) = (
1
6
,
2
3
,
1
6
)

and
ψφSh

({12, 23}, v̄) = (
1
3
,
1
3
,
1
3
)

in contrast to the direct use of the Shapley (Myerson) value yielding the same
result in both cases. �

5.6 Comments

There are several ways to extend the minimum costs spanning tree model.
For example, there may be several agents for each node in the network as in
Herzog et al. (1997) or some nodes may be public like in the general Steiner
tree model. Steiner trees are not unusual in practice. Imagine, for example,
that the supplier (the source) build a “back-bone” network to which agents
have individual connections like in the case of cable-TV or the Internet. The
back-bone is the public part of the network with public nodes, which several
agents utilize before “reaching” their individual connections. Such Steiner
trees are generally more difficult to handle in terms of allocating costs. For
example, it can be shown that there does not exist a cost allocation rule
satisfying the Stand-alone Test, see Megiddo (1978).

But, there may also be uncertainty about link costs. For instance, in
telecommunication networks routing delays on links (interpreted as link costs)
are uncertain as they depend on the traffic in the network. Hence, such link
costs are typically represented by intervals instead of real numbers as in
the original MCST-model. Handling interval costs becomes somewhat com-
plicated since its no longer straightforward to define the efficient (or cost
minimizing) spanning tree. One way to redefine an optimality criterion is to
use the notion of relative robustness: A relatively robust spanning tree is a
spanning tree where the total cost minimizes the maximum deviation from
the cost minimizing spanning tree over all realisations of link costs (where
each realisation form a “traditional” MCST with link costs as real numbers
chosen from the cost intervals for each link), see, e.g., Montemanni (2006).
Another approach to modeling uncertain link costs is found in Suijs (2003).
Here link costs are considered as consisting of two parts; construction and
maintenance costs. While the first part can be argued to be deterministic the
latter part is typically random and will be closely connected to the networks
reliability. Using the framework of stochastic cooperative games, mentioned
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in Sect. 3.7, agents are assumed to be expected utility maximizers with con-
stant absolute risk aversion and a two-stage Bird allocation rule is introduced
to allocate the random costs. Loosely speaking, the first stage allocates the
random cost as usual following the Bird rule. In the second stage agents can
then redistribute these costs since Pareto improvements may be obtained
from reshuffling the risks involved through mutual insurance. It turns out
that such opportunities to insure risks results in (two-stage Bird) allocations
that satisfies the stand-alone cost principle.

As mentioned above, Hougaard et al. (2008) introduce the notion of a
decentralized pricing rule, which can be seen as an upper bound on agents
payment based solely on the agents’ own connection costs. A particular rule,
called the canonical pricing rule, is introduced and characterized as the small-
est among those which improves on the stand-alone bound and are either
superadditive or piecewise-linear in connection costs.

Finally, we have only considered models where the set of agents is given
and connections only differ in terms of costs or communication, but typically
in practical situations (like in the case of the Internet) connections may differ
in type (capacity) and the set of users (agents) is constantly changing. The
point is that the presence of network externalities may influence the optimal
structure of the network and this may again influence the way that costs
should be allocated, but this issue seems to remain an open problem since
few (if any) studies have been concerned with this.

5.7 Summary

This chapter has considered three different network scenarios: The first con-
cerns a group of users who connects to a common supplier in the least costly
way. There are no externalities in the network so the problem can be rep-
resented solely by the associated link costs. A relevant cost allocation rule
therefore only takes these link costs into account. The second scenario con-
cerns the case where there are network externalities and a proxy for these are
given by a “communication” matrix. Meanwhile, the cost structure is made
as simple as possible by assuming that every agent is characterized by an
individual connection cost to the entire network as such. Total costs in the
network (i.e., the sum of individual connection costs) are then allocated by
a rule that takes the profile of individual connection costs and/or the “com-
munication” matrix into account. Finally, the third scenario concerns general
networks related to a given group of agents where the network itself has a
value depending on the particular way that agents are connected. Common
for all three scenarios is that the set of agents is exogenously determined and
costs (or values) are certain.

In the first scenario (concerning the minimum cost spanning tree model)
several allocation rules were studied and it seems that most of the well-known
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allocation rules have their strengths and weaknesses. Recently it has been
suggested to use the Shapley value on the irreducible form of the allocation
problem since such a rule satisfies a number of desirable properties, but a
serious drawback of this rule seems to be the rigidity towards changes in the
stand-alone costs of agents.

In the second scenario (concerning the demand-based allocation model) it
was shown that a natural family of allocation rules consists of combinations of
the two extreme solutions, i.e., the Private Cost rule (where each agent pays
his own connection cost – thereby ignoring the externalities involved) and
the External Cost rule (where each agent pays a weighted average of all the
other agents connection costs – thereby allowing for full cross-subsidization
between agents).

Finally, (concerning the general model of social networks) it was shown in
Sect. 5.1 (3) that it is easy to imagine situations where agents are prevented
from enjoying the positive network externalities due to lack of reallocation
possibilities. However, it can be demonstrated that even if we use alloca-
tion rules to make such reallocations we still can not guarantee stability and
optimal size of the network at the same time for arbitrary network value
functions.
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